Home
Class 12
MATHS
Let f:(-1,1)rarrB be a function defined...

Let `f:(-1,1)rarrB` be a function defined by `f(x)=tan^(-1)[(2x)/(1-x^2)]` . Then `f` is both one-one and onto when `B` is the interval. (a)`[0,pi/2)` (b) `(0,pi/2)` (c)`(-pi/2,pi/2)` (d) `[-pi/2,pi/2]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr B , be a function defined f(x)=tan^(-1).(2x)/(sqrt3(1+x^(2))) , then f is both one - one and onto when B, is the interval

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

Show that f(x)=tan^(-1)(sinx+cosx) is a decreasing function on the interval on (pi//4,\ pi//2) .

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

f: (0,oo) to (-pi/2,pi/2)" be defined as, "f(x)=tan^(-1) (log_(e)x) . The above function can be classified as :

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

Let f : R to [0, pi/2) be defined by f ( x) = tan^(-1) ( 3x^(2) + 6x + a)". If " f(x) is an onto function . then the value of a si

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?