Home
Class 12
MATHS
Find the range of f(x)=[sin{x}], where {...

Find the range of `f(x)=[sin{x}],` where `{}` represents the fractional part function and `[]` represents the greatest integer function.
A. `-1`
B. `0`
C. `1`
D. `0.5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)=sin^(-1)[x]w h e r[] represents the greatest function).

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.

Find the domain and range of f(x)=sin^(-1)[x]w h e re[ ] represents the greatest function).

Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[sin^(-1)x]

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[2/(1+x^2)],xgeq0