Home
Class 12
MATHS
Let R be the set of real numbers. If f:R...

Let `R` be the set of real numbers. If `f:R->R` is a function defined by `f(x)=x^2,` then `f` is injective but not surjective surjective but not injective bijective none of these (a) injective but not surjective (b) surjective but not injective (c) bijective (d) non of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f: R->R , f(x)=x^2 is (a) injective but not surjective (b) surjective but not injective (c) injective as well as surjective (d) neither injective nor surjective

If f: R->R be the function defined by f(x)=4x^3+7, show that f is a bijection.

If f: R->R be the function defined by f(x)=4x^3+7 , show that f is a bijection.

Let A={x in R :-1lt=xlt=1}=B . Then, the mapping f: A->B given by f(x)=x|x| is (a) injective but not surjective (b) surjective but not injective (c) bijective (d) none of these

Let A={x in R :-1lt=xlt=1}=B . Then, the mapping f: A->B given by f(x)=x|x| is (a) injective but not surjective (b) surjective but not injective (c) bijective (d) none of these

Let A{x :-1lt=xlt=1}a n df: Avec such that f(x)=x|x|, then f is (a) bijection (b) injective but not surjective (c)Surjective but not injective (d) neither injective nor surjective

Let A}x :-1lt=xlt=1}a n df: Avec A such that f(x)=x|x|, then f is (a) bijection (b) injective but not surjective Surjective but not injective (d) neither injective nor surjective

f: R->R given by f(x)=x+sqrt(x^2) is (a) injective (b) surjective (c) bijective (d) none of these

Let f:[-oo,0)->(1,oo) be defined as f(x)=(1+sqrt(-x))-(sqrt(-x)-x) then f(x) is (A) injective but not surjective (B) injective as well as surjective (C) neither injective nor surjective (D) surjective nut not injective

A function f:(0,oo) -> [0,oo] is given by f(x)=|1-1/x| , then f(x) is (A) Injective but not surjective (B) Injective and bijective (C) Injective only (D) Surjective only