Home
Class 12
MATHS
If f(x) = [x] , 0<= {x} < 0.5 and f(x) =...

If `f(x) = [x] , 0<= {x} < 0.5 and f(x) = [x]+1 , 0.5<{x}<1 ` then prove that f (x) = -f(-x) (where[.] and{.} represent the greatest integer function and the fractional part function, respectively).

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2 .

If f(x) =x , x 0 then lim_(x->0) f(x) is equal to

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If f(x) =|x| , then f'(0) is

If f(x)=[|x|+1, x 0

{{:((|x|)/(x)","if x ne 0 ),(0"," if x = 0 ):} Check continuity of f(x) at x = 0

{{:((x)/(|x|)","if x lt 0 ),(-1"," if x ge 0 ):} Check continuity of f(x) at x = 0

Prove that f(x)= a^x , 0 < a < 1 , is decreasing in R.

Let f'(x) ={[|x| , 0lt|x|le2],[1, x=0]} . Examine the behaviour of f(x) at x=0.

If (x)=tan x , the prove that :f(x)+f(-x)=0