Home
Class 12
MATHS
Let f(x)=(x+1)^2-1, xgeq-1. Then the se...

Let `f(x)=(x+1)^2-1, xgeq-1.` Then the set `{x :f(x)=f^(-1)(x)}` is (a)`{0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2}` (b) `{0,-1}` (c)`{0,1}` (d) `e m p t y`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x+1)^2-1, xgeq-1. Then the set {x :f(x)=f^(-1)(x)} is {0,1,(-3+isqrt(3))/2,(-3-isqrt(3))/2} (b) {0,1,-1 {0,1,1} (d) e m p t y

Greatest value of f(x)=(x+1)^(1/3)-(x-1)^(1/3) on [0,1] is 1 (b) 2 (c) 3 (d) 1/3

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

Let f(x)={(1+3x)^(1/x), x != 0e^3,x=0 Discuss the continuity of f(x) at (a) x=0, (b) x=1

Let f(x)=x^3 be a function with domain {0, 1, 2, 3}. Then domain of f^(-1) is (a) {3, 2, 1, 0} (b) {0, -1, -2, -3} (c) {0, 1, 8, 27} (d) {0, -1, -8, -27}

If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

If A=[[(-1+isqrt(3))/(2i),(-1-isqrt(3))/(2i)],[(1+isqrt(3))/(2i),(1-isqrt(3))/(2i)]] , i = sqrt(-1) and f (x) = x^(2) + 2, then f(A) equals to

Let f(x)={(1+3x)^(1/x),x!=0 and e^3,x=0. Discuss the continuity of f(x) at (a)x=0, (b) x=1.

Find the derivative of f(x)=2x^2+3x-5 at x=-1 . Also, prove that f'(0)+3f'(-1)=0.

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xf(x)= (a)1 (b) -1 (c) 0 (d) none of these