Home
Class 12
MATHS
The period of function 2^({x})+sinpix+3^...

The period of function `2^({x})+sinpix+3^({x/2})+cos2pix` (where `{x}` denotes the fractional part of `(x)` is 2 (b) 1 (c) 3 (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

Period of the function f(x) = cos(cospix) +e^({4x}) , where {.} denotes the fractional part of x, is

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

int_0^9{sqrt(x)}dx , where {x} denotes the fractional part of x , is 5 (b) 6 (c) 4 (d) 3

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then