Home
Class 12
MATHS
Let f:[-pi/3,(2pi)/3] rarr [0,4] be a fu...

Let `f:[-pi/3,(2pi)/3] rarr [0,4]` be a function defined as `f(x)=sqrt(3)sinx-cosx+2.` Then `f^(-1)(x)` is given by
`(a)` `sin^(-1)((x-2)/2)-pi/6`
`(b)` `sin^(-1)((x-2)/2)+pi/6`
`(c)` `(2pi)/3+cos^(-1)((x-2)/2)`
`(d)` none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by sin^(-1)((x-2)/2)-pi/6 sin^(-1)((x-2)/2)+pi/6 (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Let f: [(2pi)/(3), (5pi)/(3)]to[0,4] be a function difined as f (x) =sqrt3 sin x - cos x +2, then :

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

let f:[-pi/3,pi/6]rarr B defined by f(x)=2cos^2x+sqrt3sin2x+1 . Find B such that f^-1 exists. Also find f^-1

Let f:[-(5pi)/(12),-pi/3]vecR is a function f(x)=tan(x+(2pi)/3)-tan(x+pi/6)+cos(x+pi/6) then

Let f : [-(pi)/(2), (pi)/(2)] rarr [3, 11] defined as f(x) = sin^(2)x + 4 sin x + 6 . Show that f is bijective function.

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these