Home
Class 12
MATHS
The domain of f(x)=((log)2(x+3))/(x^2+3x...

The domain of `f(x)=((log)_2(x+3))/(x^2+3x+2)` is `R-{-1,2}` (b) `(-2,oo)` `R-{-1,-2,-3}` (d) `(-3,oo)-(-1,-2}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,-2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of f(x)=3/(4-x^2)+log_(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo) (2) (-2,-1)uu(-1,0)uu(2,oo) (3) (-1,0)uu(1,2)uu(2,oo) (4) (1,2)uu(2,oo)

The domain of definition of f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))} , is

If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p x^3 +(p+q)x^2 +(q+r) x + r) is (a) R-{-q/2p} (b) R-[(-oo,-1]uu{-q/(2p)}] (c) R-[(-oo,-1)nn{-1/(2p)}] (d) R

The domain of the function f(x)=sqrt(log(1/(|sinx|))) (a) R-{-pi,pi} (b) R-{npi|npiZ} (c) R-{2npi|n in z} (d) (-oo,oo)

Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))] .

The domain of the function f(x)=sqrt(((x+1)(x-3))/(x-2)) is [-1,2)uu[3,oo) b. (-1,2)uu[3,oo) c. [-1,2]uu[3,oo) d. none of these

The domain of the function f(x)=((x+1)(x-3))/(x-2) is a. [-1,2)uu[3,oo) b. (-oo,-3)uu(2,5) c. (-oo,-3]uu[2,5] d. none of these