Home
Class 12
MATHS
If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+p...

If `f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3)a n dg(5/4)=1,` then `(gof)(x)` is ____________

Text Solution

AI Generated Solution

To solve the problem, we need to find \( (g \circ f)(x) \) given the function \( f(x) = \sin^2 x + \sin^2(x + \frac{\pi}{3}) + \cos x \cos(x + \frac{\pi}{3}) \) and that \( g\left(\frac{5}{4}\right) = 1 \). ### Step-by-step Solution: 1. **Expand \( f(x) \)**: \[ f(x) = \sin^2 x + \sin^2\left(x + \frac{\pi}{3}\right) + \cos x \cos\left(x + \frac{\pi}{3}\right) \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^2x+sin^2(x+pi/3)+cosxcos(x+pi/3) and g(5/4)=1, then (gof)(x) is ____________

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3)) is (where c is constant)

If f(x)=cos^(2)x+cos^(2)(x+(pi)/(3))+sinxsin(x+(pi)/(3)) and g((5)/(4))=3 , then (d)/(dx)(gof(x)) =

solve :sin^-1x+sin^-1 2x=pi/3

solve :sin^-1x+sin^-1 2x=pi/3

Evaluate: int(sin2x)/(sin(x-pi/3)sin(x+pi/3))\ dx

The period of the function f(x)=c^((sin^2x+sin^(2(x+pi/3))+cosxcos(x+pi/3)) is (where c is constant) 1 (b) pi/2 (c) pi (d) cannot be determined

If f: R->R be given by f(x)=sin^2x+sin^2(x+pi//3)+cosx\ cos(x+pi//3) for all x in R , and g: R->R be such that g(5//4)=1 , then prove that gof: R->R is a constant function.

The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is