Home
Class 12
MATHS
The domain of the function f(x)=1/(sqrt(...

The domain of the function `f(x)=1/(sqrt({sinx}+{sin(pi+x)}))` where `{dot}` denotes the fractional part, is (a)`[0,pi]` (b) `(2n+1)pi/2, n in Z` (c)`(0,pi)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (0,pi) (d) none of these

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

The domain of the function f(x)=(log)_e{(log)_(|sinx|)(x^2-8x+23)-{3/((log)_2|sinx|)} contains which of the following interval(s)? 3,pi) (b) (pi,(3pi)/2) (c) ((3pi)/2,5) (d) none of these

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then