Home
Class 12
MATHS
The range of the function f(x)=(e^x-e^(|...

The range of the function `f(x)=(e^x-e^(|x|))/(e^x+e^(|x|))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the function f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2 is given by

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))

The function f(x) = e^(|x|) is

The function f(x) = e^(|x|) is

The function f(x) =e^(|x|) is

The inverse of the function f:Rto range of f, defined by f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x)) is

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

Find the range of following functions: y=(e^(x)-e^(-x))/(e^(x)+e^(-x)),xge0

Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^(|x|)) , then the range of f(x) is: (a)R (b) [0,1] (c) [0,1) (d) [0,1/2)