Home
Class 12
MATHS
The domain of definition of f(x)=((log)2...

The domain of definition of `f(x)=((log)_2(x+3))/(x^2+3x+2)` is `R-{-1,-2}` (b) `(-2,oo)` `R-{-1,-2,-3}` (d) `(-3,oo)-{-1,-2}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of definition of f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))} , is

The domain of definition of f (x) = sin ^(-1) {log_(2)(x^(2) + 3x + 4)} , is

Domain of the function f(x)=log(sin^(-1)sqrt(x^(2)+3x+2)) is :

The domain of the definition of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x) is

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p x^3 +(p+q)x^2 +(q+r) x + r) is (a) R-{-q/2p} (b) R-[(-oo,-1]uu{-q/(2p)}] (c) R-[(-oo,-1)nn{-1/(2p)}] (d) R

The domain of definition of the function f(x) = log_(3) {-log_(1//2)(1+(1)/(x^(1//5)))-1}

The domain of definition of f(x)=sqrt((x+3)/((2-x)(x-5))) is (a) (-oo,-3]uu(2,5) (b) (-oo,-3)uu(2,5) (c) (-oo,-3]uu[2,5] (d) none of these