Home
Class 12
MATHS
Let f(x)=(alphax)/((x+1)),x!=-1. for wha...

Let `f(x)=(alphax)/((x+1)),x!=-1.` for what value of `alpha` is `f(f(x))=x ?` (a)`sqrt(2)` (b) `-sqrt(2)` (c) `1` (d) `-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =(alphax)/(x+1) Then the value of alpha for which f(f(x) = x is

Let f(x)=(alphax)/(x+1),x!=-1. Then write the value of alpha satisfying f(f(x))=x for all x!=-1.

If x^3f(x)=sqrt(1+cos2x)+|f(x)|, (-3pi)/4ltxlt(-pi) /2 and f(x)=(alphacosx)/(1+x^3) , then the value of alpha is (A) 2 (B) sqrt2 (C) -sqrt2 (D) 1

Let f(x)=(sqrt(x-2sqrt(x-1)))/(sqrt(x-1)-1).x then

let f(x)=sqrt(1+x^2) then

Let f(x) =4x^2-4ax+a^2-2a+2 be a quadratic polynomial in x , a be any real number. If x-coordinate of vertex of parabola y =f(x) is less than 0 and f(x) has minimum value 3 for x in [0,2] then value of a is (a) 1+sqrt2 (b) 1-sqrt2 (c) 1-sqrt3 (d) 1+sqrt3

If f(1)=1,f^(prime)(1)=2, then write the value of lim_(x->1)(sqrt(f(x))-1)/(sqrt(x)-1)

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)