Home
Class 12
MATHS
If f(x) satisfies the relation f(x+y)=f(...

If `f(x)` satisfies the relation `f(x+y)=f(x)+f(y)` for all `x , y in Ra n df(1)=5,t h e n` `f(x)i sa nod dfu n c t ion` `f(x)` is an even function `sum_(n=1)^mf(r)=5^(m+1)C_2` `sum_(n=1)^mf(r)=(5m(m+2))/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

If the function f satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in Ra n df(0)!=0 , then f(x) is an even fu n c t ion f(x) is an odd fu n c t ion If f(2)=a ,t h e nf(-2)=a If f(4)=b ,t h e nf(-4)=-b

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

lf f: R rarr R satisfies, f(x + y) = f(x) + f(y), AA x, y in R and f(1) = 4, then sum_(r=1)^n f(r) is

y=f(x) , where f satisfies the relation f(x+y)=2f(x)+x y(y)+ysqrt(f(x))AAx , y in Ra n df^(prime)(0)=0. Then f(6) is equal of f(-3) is ________