Home
Class 12
MATHS
The period of the function f(x)=[6x+7]+c...

The period of the function `f(x)=[6x+7]+cospix-6x ,` where `[dot]` denotes the greatest integer function is: (a)3 (b) 2`pi` (c) 2 (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function