Home
Class 12
MATHS
Let f(x)=sinx and g(x)=(log)e|x| If the ...

Let `f(x)=sinx and g(x)=(log)_e|x|` If the ranges of the composition functions `fog and gof` are `R_1 and R_2,` respectively then (a) `R_1{u:-1 le u < 1}, R_2={v:-oo v < 0}` (b) `R_1={u:-oo < u < 0}, R_2={v:-oo < v < 0}` (c) `R_1={u:-1 < u < 1},R_1={v:-oo V le 0}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(1-x) and g(x)=(log)_e x are two real functions, then describe functions fog and gof .

If f(x)=e^x and g(x)=(log)_e x(x >0), find fog and gof . Is fog=gof?

Let f(x)=x^2+x+1 and g(x)=sinx . Show that fog!=gof .

If f(x)=sqrtx(x > 0) and g(x)=x^2-1 are two real functions, find fog and gof is fog=gof ?

If f(x)=sqrtx(x > 0) and g(x)=x^2-1 are two real functions, find fog and gof is fog=gof ?

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .

Let f(x)=x+1/xa n dg(x)=(x+1)/(x+2) Match the composite function given in Column I with respective domains given in Column II Column I, Column II fog(x) , p. R-{-2,-5/3} gof(x) , q. R-{-1,0} fof(x) , r. R-{0} gog(x) , s. R-{-2,-1} , t R-(-1}

Let f:R rarr R, f(x)=x+log_(e)(1+x^(2)) . Then f(x) is what kind of function

Let f,g:vec R be defined by f(x)=2x+1 and g(x)=x^2-2 for all x in R, respectively. Then, find gof

f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R . If the function fog(x) is defined, then it domain and range respectively are: