Home
Class 12
MATHS
The number of integral values of x for ...

The number of integral values of `x` for which `((2^(pi/(tan^(-1)x))-4)(x-4)(x-10))/(x !-(x-1)!)<0i s- - ----.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values of x for which ((pi/(2^tan^((-1)x-4)))(x-4)(x-10))/(x !-(x-1)!)<0i s______

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

The number of integral solutions of x^(2)-3x-4 lt 0 , is

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) =(3pi)/(4)

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^(-1)(x^4-(x^8)/3+(x^(12))/9ddot)=pi/2, where 0lt=|x|

The number of integral value(s) of x satisfying the equation |x^4 .3^(|x-2|). 5^(x-1)|=-x^4 .3^(|x-2|). 5^(x-1) is

find the value of lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4