Home
Class 12
MATHS
The number of integers in the range of t...

The number of integers in the range of the function `f(x)=|4((sqrt(cos"x")-sqrt(sinx))(sqrt(cos"x")+sqrt(sinx)))/(cosx+sinx)|` is______

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

Is the function f(x) =sqrt(sinx) periodic?

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

int sinx sqrt(1-cos 2x) dx

Differentiate w.r.t. x the function cot^(-1)""((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),0 < x < pi/2

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)