Home
Class 12
MATHS
Let f be a real-valued invertible funct...

Let `f` be a real-valued invertible function such that `f((2x-3)/(x-2))=5x-2, x!=2.` Then value of `f^(-1)(13)` is________

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function such that f(x)+3xf(1/x)=2(x+1) for all real x > 0. The value of f(5) is

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Let f be a real-valued function such that f(x)+2f((2002)/x)=3xdot Then find f(x)dot

Let f be a real valued function defined by f(x)=x^2+1. Find f'(2) .

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

If f(x) is an odd function, f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is________

Let f be a real-valued function defined by f(x) = 3x^(2) + 2x + 5 Find f'(1).

Let f be a function satisfying the functional rule 2f(x)+f(1-x)=xAAx in Rdot Then the value of f(1)+f(2)+f(3) is

Let y=f(x) be a real valued function satisfying xdy/dx = x^2 + y-2 , f(1)=1 then f(3) equal

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :