Home
Class 12
MATHS
Let f(x)=sqrt(|x|-{x})(w h e r e{dot} d...

Let `f(x)=sqrt(|x|-{x})(w h e r e{dot}` denotes the fractional part of `(x)a n dX , Y` are its domain and range, respectively). Then (a) `X in (-oo,1/2) ` and ` Y in (1/2,oo)` (b)`X in (-oo in ,1/2)uu[0,oo)a n dY in (1/2,oo)` (c)`X in (-oo,-1/2)uu[0,oo)a n dY in [0,oo)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->-1)1/(sqrt(|x|-{-x}))(w h e r e{x} denotes the fractional part of (x) ) is equal to (a)does not exist (b) 1 (c) oo (d) 1/2

If |x+3|geq10 , then x in (-13 ,\ 7] b. x in (-oo,-13)uu(7,oo) c. x in (-13 ,7) d. x in (-oo,\ -13]uu[7,oo)

Complete solution set of the inequation (x^2-1)(x^2-6x+8)geq0 is (a) x in [-1,1]uu[2,4] (b) x in (-oo,-1)uu[1,2]uu[4,oo] (c) x in [-1,2]uu[4,oo] (d) none of these

Solution set of the inequation, (x^2-5x+6)/(x^2+x+1)<0 is x in (-oo,2) (b) x in (2,3) x in (-oo,2)uu(3,oo) (d) x in (3,oo)

If (|x-2|)/(x-2)geq0, then x in [2,oo) b. x in (2,oo) c. x in (-oo,2) d. x in (-oo,2]

If (log)_3(x^2-6x+11)lt=1, then the exhaustive range of values of x is: (a) (-oo,2)uu(4,oo) (b) (2,4) (c) (-oo,1)uu(1,3)uu(4,oo) (d) none of these

The domain of f(x)="log"|logx|i s (0,oo) (b) (1,oo) (c) (0,1)uu(1,oo) (d) (-oo,1)

If |x-1|>5, then a. x in (-4,6) b. x in [-4,6] c. x in (-oo,-4)uu(6,oo) d. x in (-oo,-4)uu[6,oo)

If |x+2|lt=9 then x in (-7, 11) b. x in [-11 ,7] c. x in (-oo,7)uu(11 ,oo) d. x in (-oo,-7)uu[11 ,oo)

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these