Home
Class 12
MATHS
Let [x] represent the greatest integer l...

Let [x] represent the greatest integer less than or equal to `x` If [`sqrt(n^2+lambda)]=[sqrt(n^2+1)]+2` , where `lambda,n in N ,` then `lambda` can assume (a) `2n+4` different values (b)` 2n+5` different values (c)`2n+3` different values (d)`2n+6` different values

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less then or equal to x, then [ (6sqrt(6) + 14)^(2n +1)]

If [x] denotes the greatest integer less than or equal to x and n in N , then f(X)= nx+n-[nx+n]+tan""(pix)/(2) , is

The value of [100(x-1)] is where [x] is the greatest integer less than or equal to x and x=(sum_(n=1)^44 cos n^@)/(sum_(n=1)^44 sin n^@)

int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

If A = [[1 ,1],[1,1]] and det (A^(n) - 1) = 1 -lambda ^(n), n in N, then the value of lambda is

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

For each positive integer n , let y_n=1/n((n+1)(n+2)dot(n+n))^(1/n) For x in R let [x] be the greatest integer less than or equal to x . If (lim)_(n->oo)y_n=L , then the value of [L] is ______.

The graph of x^(4)=x^(2)y^(2) is a union of n different lines, then the value of n is.

If the value of the definite integral int_0^1(sin^(-1)sqrt(x))/(x^2-x+1)dx is (pi^2)/(sqrt(n)) (where n in N), then the value of n/(27) is