Home
Class 12
MATHS
The period of the function f(x)=c^((sin^...

The period of the function `f(x)=c^((sin^2x+sin^(2(x+pi/3))+cosxcos(x+pi/3))` is (where `c` is constant) 1 (b) `pi/2` (c) `pi` (d) cannot be determined

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The period of the function |sin^3x/2|+|cos^5x/5| is 2pi (b) 10pi (c) 8pi (d) 5pi

Range of the function : f(x)=log_2((pi+2sin^(- 1)((3-x)/7))/pi)

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3