Home
Class 12
MATHS
The range of sin^(-1)[x^2+1/2]+cos^(-1)[...

The range of `sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2]` , where [.] denotes the greatest integer function, is (a)`{pi/2,pi}` (b) `{pi}` (c) `{pi/2}` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The value of int_(-2)^(2)(sin^(2)x)/([(x)/(pi)]+(1)/(2))dx where [.] denotes greatest integer function , is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is