Home
Class 11
MATHS
Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0....

Solve `x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.`

A

`x``in[0,1]uu[3/2,oo)`

B

`x``in[3/2,oo)`

C

`x``in[0,1]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x(x+2)^2(x-1)^5(2x-3)(x-3)^4 \geq 0 \), we will follow these steps: ### Step 1: Identify the expression Let \( E = x(x+2)^2(x-1)^5(2x-3)(x-3)^4 \). ### Step 2: Find the roots of the expression We need to find the values of \( x \) for which \( E = 0 \). This occurs when any factor of \( E \) is equal to zero. 1. \( x = 0 \) 2. \( x + 2 = 0 \) → \( x = -2 \) 3. \( x - 1 = 0 \) → \( x = 1 \) 4. \( 2x - 3 = 0 \) → \( x = \frac{3}{2} \) 5. \( x - 3 = 0 \) → \( x = 3 \) ### Step 3: List the critical points The critical points from the above calculations are: - \( x = -2 \) - \( x = 0 \) - \( x = 1 \) - \( x = \frac{3}{2} \) - \( x = 3 \) ### Step 4: Determine the sign of \( E \) in each interval We will analyze the sign of \( E \) in the intervals defined by these critical points. The intervals are: 1. \( (-\infty, -2) \) 2. \( (-2, 0) \) 3. \( (0, 1) \) 4. \( (1, \frac{3}{2}) \) 5. \( (\frac{3}{2}, 3) \) 6. \( (3, \infty) \) ### Step 5: Test the sign in each interval 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \) - \( E = (-3)(-1)^2(-4)^5(-9)(-6)^4 \) → Positive 2. **Interval \( (-2, 0) \)**: Choose \( x = -1 \) - \( E = (-1)(1)^2(-2)^5(-5)(-4)^4 \) → Negative 3. **Interval \( (0, 1) \)**: Choose \( x = \frac{1}{2} \) - \( E = \left(\frac{1}{2}\right)(\frac{5}{2})^2\left(-\frac{1}{2}\right)^5(-2)(-\frac{5}{2})^4 \) → Negative 4. **Interval \( (1, \frac{3}{2}) \)**: Choose \( x = 1.2 \) - \( E = (1.2)(3.2)^2(0.2)^5(-0.6)(-1.8)^4 \) → Positive 5. **Interval \( (\frac{3}{2}, 3) \)**: Choose \( x = 2 \) - \( E = (2)(4)^2(1)^5(1)(-1)^4 \) → Positive 6. **Interval \( (3, \infty) \)**: Choose \( x = 4 \) - \( E = (4)(6)^2(3)^5(5)(1)^4 \) → Positive ### Step 6: Summary of signs - \( (-\infty, -2) \): Positive - \( (-2, 0) \): Negative - \( (0, 1) \): Negative - \( (1, \frac{3}{2}) \): Positive - \( (\frac{3}{2}, 3) \): Positive - \( (3, \infty) \): Positive ### Step 7: Include the critical points Since we need \( E \geq 0 \), we include the points where \( E = 0 \): - At \( x = -2 \): \( E = 0 \) - At \( x = 0 \): \( E = 0 \) - At \( x = 1 \): \( E = 0 \) - At \( x = \frac{3}{2} \): \( E = 0 \) - At \( x = 3 \): \( E = 0 \) ### Step 8: Final solution The solution to the inequality \( E \geq 0 \) is: \[ x \in (-\infty, -2] \cup [1, \frac{3}{2}] \cup [3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos
  • LOGARITHM

    CENGAGE ENGLISH|Exercise All Questions|173 Videos

Similar Questions

Explore conceptually related problems

Sovle x(x+2)^2(x-1)^5 (2x-3)(x-3)^4 ge 0

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve (x^2-2x-3)/(x+1)=0.

Solve (x^2-2x-3)/(x+1)=0.

Solve ((x+2)(x^2-2x+1))/(-4 +3x-x^2) ge 0

Solve : (x+2)(x+3)+(x-3)(x-2)-2x(x+1)=0

Solve for x : (x-1)/(x+2)+(x-3)/(x-4)=(10)/3,\ \ x!=-2,\ 4

Solve (2x-3)/(3x-5)geq3