Home
Class 11
MATHS
Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g...

Let `f(x)={x+1,x >0 \n 2-x ,xlt=0` and `g(x)={x+3,x<1,x^2-2x-2,1lt=x<2x-5,xgeq2` Find the LHL and RHL of `g(f(x))` at `x=0` and, hence, fin `lim_(x->0)g(f(x)).`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={{:(x+1", "xlgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):} Find the LHL and RHL of g(f(x)) at x=0 and, hence, find lim_(xto0) g(f(x)).

Let f(x)=x^2-2x ,x in R ,a n dg(x)=f(f(x)-1)+f(5-f(x))dot Show that g(x)geq0AAx in Rdot

f(x)={:{(x+1,x<0 , x^2,xlt=0):} , x≥0  and g(x)={x^3, x<1 2x−1, x≥1 find f(g(x)) and its domain and range

Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0 .Let f(x)={x/|x|g(x), 0 !=0 and 0,x=0 and h(x)=e^(|x|) for all x in R . Let (foh)(x) denote f(h(x)) and (hof)(x) denote h(f(x)) . Then which of the following is (are) true? A. f is differentiable at x = 0 B. h is differentiable at x = 0 C. f o h is differentiable at x = 0 D. h o f is differentiable at x = 0

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is

Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ^(2). Let n be the numbers of real roots of g(x) =0, then:

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).

If f(x)={x-1,xgeq 1 2x^2-2,x 0-x^2+1,xlt=0,a n dh(x) =|x|,t h e n lim_(x->0)f(g(h(x))) is___

Let f(x) be defined on [-2,2] and be given by f(x) = {−1;−2≤x≤0} and f(x) = {x−1 ; 0 < x ≤ 2 } ​ . and g(x)= f(|x|)+|f(x)| Find g(x)

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. Evaluate: ("lim")(xto0)(1-"cos"(1-cosx)dot)/(x^4)

    Text Solution

    |

  2. Evaluate: [("lim")(xrarr0)(tan^(-1)x)/x], where [.]represent the g...

    Text Solution

    |

  3. Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x<1,x^2-2x-2,1lt=x<2x...

    Text Solution

    |

  4. Evaluate: ("lim")(xto pi/4)(sqrt(2)cosx-1)/(cotx-1)

    Text Solution

    |

  5. lim(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the gre...

    Text Solution

    |

  6. Evaluate: ("lim")(xvec0)(1-cosm x)/(1-cosn x)

    Text Solution

    |

  7. lim(x->oo)cot^(-1)(x^(-a)loga x)/(sec^(-1)(a^xlogx a)),(a >1)is equal ...

    Text Solution

    |

  8. Evaluate: lim(x->0)(tan2x-x)/(3x-sinx)

    Text Solution

    |

  9. The value of ("lim")(xveca)sqrt(a^2-x^2)cot(pi/2)sqrt((a-x)/(a+x)) is ...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)(cot2x-cos e c2x)/x

    Text Solution

    |

  11. lim(x-&gt;0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)= (a)-1 (b) ...

    Text Solution

    |

  12. Evaluate: (lim(n->oo)ncos(pi/(4n))sin(pi/(4n))

    Text Solution

    |

  13. The value of lim(n->oo)[(2n)/(2n^2-1)cos(n+1)/(2n-1)-n/(1-2n)dot(n(-1)...

    Text Solution

    |

  14. Evaluate: ("lim")(hvec0)(2[sqrt(3)sin(pi/6+h)-cos(pi/6+h)])/(sqrt(3)h(...

    Text Solution

    |

  15. Evaluate: ("lim")(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2...

    Text Solution

    |

  16. Evaluate: ("lim")(xvec0)(cos^(-1)((1-x^2)/(1+x^2)))/(sin^(-1)x)

    Text Solution

    |

  17. Evaluate:lim(n->oo)n{sqrt((1-cos(1/n))sqrt((1-cos(1/n))sqrt((1-cos(1/n...

    Text Solution

    |

  18. Evaluate: ("lim")(x→0,y→0)(y^2+sinx)/(x^2+siny^2) where (x , y)→(0,0)...

    Text Solution

    |

  19. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  20. Find the value of alpha so that lim(x->0)1/(x^2)(e^(alphax)-e^x-x)=3/...

    Text Solution

    |