Home
Class 11
MATHS
The polynomial x^6+4x^5+3x^4+2x^3+x+1 is...

The polynomial `x^6+4x^5+3x^4+2x^3+x+1` is divisible by_______ where `omega` is one of the imaginary cube roots of unity. (a) `x+omega` (b) `x+omega^2` (c) `(x+omega)(x+omega^2)` (d) `(x-omega)(x-omega^2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise All Questions|365 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega is an imaginary cube root of unity, then show that (1-omega)(1-omega^2)(1-omega^4) (1-omega^5)=9

If omega, omega^2 be imaginary cube root of unity then (3 +3 omega + 5 omega^2) ^6 - (2 + 6omega + 2 omega^2)^3 is equal to

If omega is an imaginary cube root of unity, then show that (1-omega+omega^2)^5+(1+omega-omega^2)^5 =32

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

If omega is an imaginary cube root of unity, then find the value of (1+omega)(1+omega^2)(1+omega^3)(1+omega^4)(1+omega^5)........(1+omega^(3n))=

If 1, omega, omega^(2) are three cube roots of unity, prove that (1+ omega- omega^(2))^(3)= (1- omega + omega^(2))^(3)= -8

If 1, omega, omega^(2) are cube roots of unity, prove that (x + y)^(2) + (x omega + y omega^(2))^(2) + (x omega^(2) + y omega)^(2)= 6xy

CENGAGE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. If a b+b c+c a=0, then solve a(b-2c)x^2+b(c-2a)x+c(a-2b)=0.

    Text Solution

    |

  2. If (costheta +isintheta)(cos2theta +isin2theta).....(cosntheta + isinn...

    Text Solution

    |

  3. The polynomial x^6+4x^5+3x^4+2x^3+x+1 is divisible by where omega is o...

    Text Solution

    |

  4. If roots of equation 3x^2+5x+1=0 are (sectheta1-t a ntheta1) and (cos ...

    Text Solution

    |

  5. If roots of the equation a x^2+b x+c=0 be a quadratic equation and α,β...

    Text Solution

    |

  6. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  7. Form a quadratic equation with real coefficients whose one root is 3-2...

    Text Solution

    |

  8. Number of solutions of the equation z^3+[3(barz)^2]/|z|=0 where z is a...

    Text Solution

    |

  9. If the roots of the quadratic equation x^2+p x+q=0 are tan30^0a n dtan...

    Text Solution

    |

  10. If xa n dy are complex numbers, then the system of equations (1+i)x+(1...

    Text Solution

    |

  11. If a ,b ,a n dc are in A.P. and one root of the equation a x^2+b c+c=0...

    Text Solution

    |

  12. If z=x+iy (x, y in R, x !=-1/2), the number of values of z satisfying ...

    Text Solution

    |

  13. If K + |K + z^(2)| = \ z|^(2) ( K in R^(-)) , then possible argument...

    Text Solution

    |

  14. If alpha is the root (having the least absolute value) of the equation...

    Text Solution

    |

  15. If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha &lt;1< beta...

    Text Solution

    |

  16. If z=x+iy and x^(2)+y^(2)=16, then the range of abs(abs(x)-abs(y)) is

    Text Solution

    |

  17. If a lt b lt c lt d, then for any real non-zero lambda, the quadratic...

    Text Solution

    |

  18. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  19. The quadratic x^2+a x+b+1=0 has roots which are positive integers, th...

    Text Solution

    |

  20. The sum of values of x satisfying the equation (31+8sqrt(15))^(x^2-3)+...

    Text Solution

    |