Home
Class 11
MATHS
If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h...

If `f(x)=2/(x-3),g(x)=(x-3)/(x+4)` , and `h(x)=-(2(2x+1))/(x^2+x-12)` then ` lim_(x->3)[f(x)+g(x)+h(x)]` is

A

`-2`

B

`-1`

C

`-2/7`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 3} [f(x) + g(x) + h(x)] \), where \( f(x) = \frac{2}{x-3} \), \( g(x) = \frac{x-3}{x+4} \), and \( h(x) = -\frac{2(2x+1)}{x^2+x-12} \), we will follow these steps: ### Step 1: Analyze the functions at \( x = 3 \) First, we substitute \( x = 3 \) into each function to see if we get any indeterminate forms. - For \( f(3) = \frac{2}{3-3} \) → undefined (infinity) - For \( g(3) = \frac{3-3}{3+4} = \frac{0}{7} = 0 \) - For \( h(3) \): We need to factor the denominator. ### Step 2: Factor the denominator of \( h(x) \) The denominator of \( h(x) \) is \( x^2 + x - 12 \). We can factor this: \[ x^2 + x - 12 = (x - 3)(x + 4) \] Thus, we can rewrite \( h(x) \): \[ h(x) = -\frac{2(2x + 1)}{(x - 3)(x + 4)} \] ### Step 3: Rewrite the limit expression Now we can express the limit as: \[ \lim_{x \to 3} \left[ \frac{2}{x-3} + \frac{x-3}{x+4} - \frac{2(2x+1)}{(x-3)(x+4)} \right] \] ### Step 4: Combine the terms To combine these fractions, we will find a common denominator, which is \( (x-3)(x+4) \): \[ \frac{2(x+4)}{(x-3)(x+4)} + \frac{(x-3)(x-3)}{(x-3)(x+4)} - \frac{2(2x+1)}{(x-3)(x+4)} \] This simplifies to: \[ \frac{2(x+4) + (x-3)^2 - 2(2x+1)}{(x-3)(x+4)} \] ### Step 5: Simplify the numerator Now we simplify the numerator: 1. Expand \( (x-3)^2 = x^2 - 6x + 9 \) 2. Combine all terms: \[ 2(x + 4) = 2x + 8 \] \[ -2(2x + 1) = -4x - 2 \] Putting it all together: \[ 2x + 8 + (x^2 - 6x + 9) - (4x + 2) = x^2 + (2x - 6x - 4x) + (8 + 9 - 2) = x^2 - 8x + 15 \] ### Step 6: Factor the numerator Now we factor \( x^2 - 8x + 15 \): \[ x^2 - 8x + 15 = (x - 3)(x - 5) \] ### Step 7: Cancel common factors Now we can cancel \( (x - 3) \): \[ \lim_{x \to 3} \frac{(x - 3)(x - 5)}{(x - 3)(x + 4)} = \lim_{x \to 3} \frac{x - 5}{x + 4} \] ### Step 8: Substitute \( x = 3 \) Now we substitute \( x = 3 \): \[ \frac{3 - 5}{3 + 4} = \frac{-2}{7} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 3} [f(x) + g(x) + h(x)] = -\frac{2}{7} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)," then "lim_(xto3) [f(x)+g(x)+h(x)]" is "

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

If f(x)=2x+3, g(x)=1-2x and h(x) =3x then find fo(goh)

If f(x) = sqrtx , g(x) = root(3)(x+1) , and h(x) = root(4)(x+2), " then "f(g(h(2)))=

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

If f(x)=x+4, g(x)=2x-1 and h(x) =3x then find (fog)oh .

if int_(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then find lim_(x to 2) g(x)

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. lim(x->0)(x(e^x-1))/(1-cosx) is equal to

    Text Solution

    |

  2. Evaluate: ("lim")(x->oo)[x(a^(1/x)-1)], a >1

    Text Solution

    |

  3. If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h(x)=-(2(2x+1))/(x^2+x-12) then...

    Text Solution

    |

  4. Evaluate: ("lim")(xvec0)((1-3^x-4^x+12^x))/(sqrt((2cosx+7))-3)

    Text Solution

    |

  5. lim(x->oo)((x^3)/(3x^2-4)-(x^2)/(3x+2)) is equal to (a) does not exis...

    Text Solution

    |

  6. Evaluate: ("lim")(xvec0)(a^(tanx)-a^(sinx))/(tanx-sinx),a >0

    Text Solution

    |

  7. lim(x->oo)((2x+1)^(40)(4x-1)^5)/((2x+3)^(45)) is equal to (a)16 (b)...

    Text Solution

    |

  8. Evaluate: ("lim")(xveca)("log"(x-a))/(log(e^x-e^a))

    Text Solution

    |

  9. The value of ("lim")(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1...

    Text Solution

    |

  10. Evaluate: ("lim")(xvec0)(e^x+e^(-x)-2)/(x^2)

    Text Solution

    |

  11. lim(x->oo)n^2(x^(1/n)-x^(1/((n+1)))),x >0 , is equal to (a)0 (b)...

    Text Solution

    |

  12. Evaluate: ("lim")(x-oo)x^(1/x)

    Text Solution

    |

  13. The value of ("lim")(x->pi)(1+cos^3x)/(sin^2x)i s 1/3 (b) 2/3 (c) -...

    Text Solution

    |

  14. Evaluate: underset(x rarr 0)("lim") ((729)^x-(243)^x-(81)^x+9^x+3^x-1...

    Text Solution

    |

  15. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  16. Evaluate: lim(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)),where n in N

    Text Solution

    |

  17. ("lim")(xvecoo)1/(1+nsin^2n x) i s equal to (a)-1 (b) 0 (c) 1 (d) ...

    Text Solution

    |

  18. Let the sequence {bn} real numbers satisfies the recurrence relation b...

    Text Solution

    |

  19. Which of the following true ({.} denotes the fractional part of the ...

    Text Solution

    |

  20. Evaluate: ("lim")(n->oo)(4^n+5^n)^(1/n)

    Text Solution

    |