Home
Class 11
MATHS
If ("lim")(x->a)[f(x)g(x)] exists, then ...

If `("lim")_(x->a)[f(x)g(x)]` exists, then both `("lim")_(x->a)f(x)a n d("lim")_(x->a)g(x)` exist.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If ("lim")_(x->a)[f(x)+g(x)]=2a n d ("lim")_(x->a)[f(x)-g(x)]=1, then find the value of ("lim")_(x->a)f(x)g(x)dot

Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not greater than xdot Then (A) ("lim")_(x->5)f(x)=1 (B) ("lim")_(x->5)f(x)=0 (C) ("lim")_(x->5)f(x) does not exist. (D)none of these

Consider the following graph of the function y=f(x)dot Which of the following is/are correct? fig. 1. ("lim")_(xvec1)f(x) does not exist. 2. ("lim")_(xvec2)f(x) does not exist. 3. ("lim")_(xvec3)f(x)=3 . 4. ("lim")_(xvec1.99)f(x) = exists

If (lim)_(x->c)(f(x)-f(c))/(x-c) exists finitely, write the value of (lim)_(x->c)f(x) .

If f(x)=(|x-a|)/(x-a) , then show that lim_(xrarra) f(x) does not exist.

If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):} , (n in I) , then (a) lim_(xrarr0)f(x) exists for n >1 (b) lim_(xrarr0)f(x) exists for n<0 (c) lim_(xrarr0)f(x) does not exist for any value of n (d) lim_(xrarr0)f(x) cannot be determined

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

Show that ("lim")_(x->0)x/(|x|) does not exist.

If lim_(x->0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(lim_(x->0)[1+(f(x))/x]^(1/x))i s____

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. The value of underset(xto2)lim(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))...

    Text Solution

    |

  2. If lim(n->oo)(n*3^n)/(n(x-2)^n +n*3^(n+1)-3^n) = 1/3 then the range of...

    Text Solution

    |

  3. If ("lim")(x->a)[f(x)g(x)] exists, then both ("lim")(x->a)f(x)a n d("l...

    Text Solution

    |

  4. If f(x)=lim(n->oo)n(x^(1/n)-1),then for x >0,y...

    Text Solution

    |

  5. lim(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

    Text Solution

    |

  6. ("lim")(x->1)[cos e c(pix)/2]^(1/((1-x))) (w h e r e [dot] represents ...

    Text Solution

    |

  7. Given ("lim")(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest...

    Text Solution

    |

  8. Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not gr...

    Text Solution

    |

  9. Use formula lim(x->0)(a^x-1)/x=log(a) to find lim(x->0)(2^x-1)/((1+x)^...

    Text Solution

    |

  10. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  11. f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim(x->0)f^...

    Text Solution

    |

  12. Evaluate underset (h to 0) lim ((a+h)^(2) sin (a+h) -a^(2) sin a)/h .

    Text Solution

    |

  13. lim(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) no...

    Text Solution

    |

  14. ("lim")(xvec 0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/xi se q u a lto 1/(m2^m)...

    Text Solution

    |

  15. ("lim")(xvec1)(1-x)tan(pix)/2=

    Text Solution

    |

  16. If f(x)={(sinx, x != npi " and " n in I2), (2, " x=npi):} and g(x)={(x...

    Text Solution

    |

  17. ("lim")(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e ...

    Text Solution

    |

  18. underset(xto pi//2)lim(sin(xcosx))/(cos(xsinx)) is equal to

    Text Solution

    |

  19. If lim(xrarr0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then ...

    Text Solution

    |

  20. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |