Home
Class 11
MATHS
If p=a+bomega+comega^2, q=b+comega+aomeg...

If `p=a+bomega+comega^2`, `q=b+comega+aomega^2`, and `r=c+aomega+bomega^2`, where `a ,b ,c!=0` and `omega` is the complex cube root of unity, then (a) `p+q+r=a+b+c` (b) `p^2+z^2+r^2=a^2+b^2+c^2` (c) `p^2+z^2+r^2=-2(p q+q r+r p)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise All Questions|365 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos

Similar Questions

Explore conceptually related problems

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is (a) -omega (b). omega^2 (c). 1 (d). -1

If the difference of the roots of x^2-p x+q=0 is unity, then a) p^2+4q=1 b) p^2-4q=1 c) p^2+4q^2=(1+2q)^2 d) 4p^2+q^2=(1+2p)^2

If zeros of the polynomial f(x)=x^3-3p x^2+q x-r are in A.P., then (a) 2p^3=p q-r (b) 2p^3=p q+r (c) p^3=p q-r (d) None of these

If the ratio of the roots of a x ^2+2b x+c=0 is same as the ratios of roots of p x^2+2q x+r=0, then a. (2b)/(a c)=(q^2)/(p r) b. b/(a c)=(q^)/(p r) c. (b^2)/(a c)=(q^2)/(p r) d. none of these

If a^3+b^3+6a b c=8c^3 & omega is a cube root of unity then: (a) a , b , c are in A.P. (b) a , b , c , are in H.P. (c) a+bomega-2comega^2=0 (d) a+bomega^2-2comega=0

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If omega be an imaginary cube root of unity, show that (a+bomega+comega^2)/(aomega+bomega^2+c) = omega^2

If p, q, r are any real numbers, then (A) max (p, q) lt max (p, q, r) (B) min(p,q) =1/2 (p+q-|p-q|) (C) max (p, q) < min(p, q, r) (D) None of these

if p: q :: r , prove that p : r = p^(2): q^(2) .

CENGAGE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. Minimum value of| z1- z2| as z1& z2 over the curves √3

    Text Solution

    |

  2. All the values of m for whilch both the roots of the equation x^2-2m x...

    Text Solution

    |

  3. If p=a+bomega+comega^2, q=b+comega+aomega^2, and r=c+aomega+bomega^2,...

    Text Solution

    |

  4. If the roots of the quadratic equation (4p-p^2-5)x^2-(2p-1)x+3p=0 lie ...

    Text Solution

    |

  5. If z1=5+12 i and |z2|=4,t h e n

    Text Solution

    |

  6. If roots of x^2-(a-3)x+a=0 are such that at least one of them is great...

    Text Solution

    |

  7. If |z-1|-1,t h e n a r g((z-1-i)//z) can be equal to pi//4 (z-2)//z ...

    Text Solution

    |

  8. Let f(x)=a x^2+bx +c a ,b ,c in R. If f(x) takes real values for re...

    Text Solution

    |

  9. Write a linear equation representing a line which is parallel to y-axi...

    Text Solution

    |

  10. If both roots of the equation a x^2+x+c-a=0 are imaginary and c > -1, ...

    Text Solution

    |

  11. If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is 0 (b) 1/(|...

    Text Solution

    |

  12. The set of all possible real values of a such that the inequality (x-(...

    Text Solution

    |

  13. Column I, Column II (Locus) parallelogram, p. z1-z4=z2-z3 rectang...

    Text Solution

    |

  14. The interval of a for which the equation t a n^2x-(a-4)tanx+4-2a=0 has...

    Text Solution

    |

  15. The range of a for which the equation x^2+ax-4=0 has its smaller root ...

    Text Solution

    |

  16. Let z and omega be two complex numbers such that |z|lt=1,|omega|lt=1 ...

    Text Solution

    |

  17. Consider the equation x^2+2x-n=0 where n in N and n in [5,100] The t...

    Text Solution

    |

  18. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  19. The total number of values a so that x^2-x-a=0 has integral roots, wh...

    Text Solution

    |

  20. If i=sqrt-1, then 4+5(-1/2+(isqrt3)/2)^334+3(-1/2+(isqrt3)/2)^365 is e...

    Text Solution

    |