Home
Class 11
MATHS
Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] ...

Let `f(x)=(x^2-9x+20)/(x-[x])` (where `[x]` is the greatest integer not greater than `xdot` Then (A)`("lim")_(x->5)f(x)=1` (B) `("lim")_(x->5)f(x)=0` (C) `("lim")_(x->5)f(x) ` does not exist. (D)none of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If ("lim")_(x->a)[f(x)g(x)] exists, then both ("lim")_(x->a)f(x)a n d("lim")_(x->a)g(x) exist.

If ("lim")_(x->a)[f(x)g(x)] exists, then both ("lim")_(x->a)f(x)a n d("lim")_(x->a)g(x) exist.

Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

If f(x)=|x-1|-[x], \where\ [x] is the greatest integer less then or equal to x , then (A) f(1+0)=-1,f(1-0)=0 (B) f(1+0)=0=f(1-0) (C) ("lim")_(x to1)f(x) exists (D) ("lim")_(x to1)f(x) does not exist

Given ("lim")_(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest integer function, then (A) ("lim")_(xvec0)[f(x)]=0 (B) ("lim")_(xvec0)[f(x)]=1 (C) ("lim")_(xvec0)[(f(x))/x] does not exist (D) ("lim")_(xvec0)[(f(x))/x] exists

If f(x)=|x|+[x] , where [x] is the greatest integer less than or equal to x, the value of f(-2.5)+f(1.5) is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

If f(x)={((tan^-1(x+[x]))/([x]-2x)[x]ne0,,),(0[x]=0,,):} where [x] denotes the greatest integer less than or equal to x, than lim_(xto0) f(x) is (a) (-1)/2 (b) 1 (c) (pi)/4 (d) Does not exist

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represents the greatest integer function) (lim)_(xvec0^+)f(x)=-1 b. (lim)_(xvec0^-)f(x)=0 c. (lim)_(xvec0^)f(x)=-1 d. (lim)_(xvec0^)f(x)=0

If ("lim")_(x->a)[f(x)+g(x)]=2a n d ("lim")_(x->a)[f(x)-g(x)]=1, then find the value of ("lim")_(x->a)f(x)g(x)dot

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. ("lim")(x->1)[cos e c(pix)/2]^(1/((1-x))) (w h e r e [dot] represents ...

    Text Solution

    |

  2. Given ("lim")(xvec0)(f(x))/(x^2)=2, \where\ [dot] denotes the greatest...

    Text Solution

    |

  3. Let f(x)=(x^2-9x+20)/(x-[x]) (where [x] is the greatest integer not gr...

    Text Solution

    |

  4. Use formula lim(x->0)(a^x-1)/x=log(a) to find lim(x->0)(2^x-1)/((1+x)^...

    Text Solution

    |

  5. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  6. f(x) is the integral of (2sinx-sin2x)/(x^3),x!=0. Find lim(x->0)f^...

    Text Solution

    |

  7. Evaluate underset (h to 0) lim ((a+h)^(2) sin (a+h) -a^(2) sin a)/h .

    Text Solution

    |

  8. lim(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) no...

    Text Solution

    |

  9. ("lim")(xvec 0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/xi se q u a lto 1/(m2^m)...

    Text Solution

    |

  10. ("lim")(xvec1)(1-x)tan(pix)/2=

    Text Solution

    |

  11. If f(x)={(sinx, x != npi " and " n in I2), (2, " x=npi):} and g(x)={(x...

    Text Solution

    |

  12. ("lim")(xvec0)[min(y^2-4y+11)(sinx)/x](w h e r e[dot]d e not e st h e ...

    Text Solution

    |

  13. underset(xto pi//2)lim(sin(xcosx))/(cos(xsinx)) is equal to

    Text Solution

    |

  14. If lim(xrarr0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then ...

    Text Solution

    |

  15. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  16. ("lim")(xvec1)((1-x)(1-x^2)...(1-x^(2n)))/({(1-x)(1-x^2)...(1-x^n)}^2)...

    Text Solution

    |

  17. The value of lim(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] repr...

    Text Solution

    |

  18. The value of ("lim")(xto1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(si...

    Text Solution

    |

  19. The value of lim(x->oo)((2^(x^n))^(1/e^x)-(3^(x^n))^(1/e^x))/(x^n) (w...

    Text Solution

    |

  20. Let lim(x->0)([x]^2)/(x^2)=l and lim(x->0)([x^2])/(x^2)=m , whe...

    Text Solution

    |