Home
Class 11
MATHS
Consider an equilateral triangle having ...

Consider an equilateral triangle having verticals at point `A(2/sqrt3 e^((lpi)/2)),B(2/sqrt3 e^((-ipi)/6)) and C(2/sqrt3 e^((-5pi)/6)).` If `P(z)` is any point an its incircle, then `AP^2+BP^2+CP^2`

A

`4`

B

`4`

C

`3`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression \( AP^2 + BP^2 + CP^2 \) for the points \( A \), \( B \), and \( C \) given in the complex plane. The points are defined as: - \( A = \frac{2}{\sqrt{3}} e^{i \frac{\pi}{2}} \) - \( B = \frac{2}{\sqrt{3}} e^{-i \frac{\pi}{6}} \) - \( C = \frac{2}{\sqrt{3}} e^{-i \frac{5\pi}{6}} \) ### Step 1: Convert the points into Cartesian coordinates Using Euler's formula \( e^{i\theta} = \cos(\theta) + i\sin(\theta) \), we can convert the points: 1. **Point A**: \[ A = \frac{2}{\sqrt{3}} e^{i \frac{\pi}{2}} = \frac{2}{\sqrt{3}} (0 + i) = \left(0, \frac{2}{\sqrt{3}}\right) \] 2. **Point B**: \[ B = \frac{2}{\sqrt{3}} e^{-i \frac{\pi}{6}} = \frac{2}{\sqrt{3}} \left(\cos\left(-\frac{\pi}{6}\right) + i \sin\left(-\frac{\pi}{6}\right)\right) = \frac{2}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} - i \frac{1}{2}\right) = \left(1, -\frac{1}{\sqrt{3}}\right) \] 3. **Point C**: \[ C = \frac{2}{\sqrt{3}} e^{-i \frac{5\pi}{6}} = \frac{2}{\sqrt{3}} \left(\cos\left(-\frac{5\pi}{6}\right) + i \sin\left(-\frac{5\pi}{6}\right)\right) = \frac{2}{\sqrt{3}} \left(-\frac{\sqrt{3}}{2} - i \frac{1}{2}\right) = \left(-1, -\frac{1}{\sqrt{3}}\right) \] ### Step 2: Set up the expression for \( AP^2 + BP^2 + CP^2 \) Let \( P(z) \) be any point in the incircle. We can express \( AP^2 \), \( BP^2 \), and \( CP^2 \) in terms of \( z \): \[ AP^2 = |z - A|^2 = |z - (0 + i \frac{2}{\sqrt{3}})|^2 \] \[ BP^2 = |z - B|^2 = |z - (1 - i \frac{1}{\sqrt{3}})|^2 \] \[ CP^2 = |z - C|^2 = |z - (-1 - i \frac{1}{\sqrt{3}})|^2 \] ### Step 3: Calculate each squared distance 1. **For \( AP^2 \)**: \[ AP^2 = |z - 0 - i \frac{2}{\sqrt{3}}|^2 = |z|^2 + \left(\frac{2}{\sqrt{3}}\right)^2 = |z|^2 + \frac{4}{3} \] 2. **For \( BP^2 \)**: \[ BP^2 = |z - 1 + i \frac{1}{\sqrt{3}}|^2 = |z - 1|^2 + \left(\frac{1}{\sqrt{3}}\right)^2 = |z - 1|^2 + \frac{1}{3} \] 3. **For \( CP^2 \)**: \[ CP^2 = |z + 1 + i \frac{1}{\sqrt{3}}|^2 = |z + 1|^2 + \left(\frac{1}{\sqrt{3}}\right)^2 = |z + 1|^2 + \frac{1}{3} \] ### Step 4: Combine the distances Now we sum these distances: \[ AP^2 + BP^2 + CP^2 = \left(|z|^2 + \frac{4}{3}\right) + \left(|z - 1|^2 + \frac{1}{3}\right) + \left(|z + 1|^2 + \frac{1}{3}\right) \] ### Step 5: Simplify the expression Using the property of equilateral triangles, we know that \( |z - 1|^2 + |z + 1|^2 = 2|z|^2 + 2 \). Thus, we have: \[ AP^2 + BP^2 + CP^2 = |z|^2 + \frac{4}{3} + (2|z|^2 + 2) + \frac{2}{3} \] \[ = 3|z|^2 + 2 + 2 = 3|z|^2 + 4 \] ### Step 6: Substitute \( |z| \) Given that \( |z| = \frac{2}{\sqrt{3}} \): \[ AP^2 + BP^2 + CP^2 = 3\left(\frac{2}{\sqrt{3}}\right)^2 + 4 = 3 \cdot \frac{4}{3} + 4 = 4 + 4 = 8 \] Thus, the final answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise All Questions|365 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos

Similar Questions

Explore conceptually related problems

In an equilateral triangle with side a, prove that the altitude is of length (a sqrt3)/2

The orthocentre of triangle with vertices (2,(sqrt3-1)/2) , (1/2,-1/2) , (2,,-1/2)

The orthocentre of triangle with vertices (2,(sqrt3-1)/2) , (1/2,-1/2) , (2,,-1/2)

The height of an equilateral triangle is sqrt(6)\ c mdot Its area is (a) 3sqrt(3)\ c m^2 (b) 2sqrt(3)\ c m^2 (c) 2sqrt(2)\ c m^2 (d) 6sqrt(2)\ c m^2

If the length of median of an equilateral triangle is x cm then its area is a. x^2 , b. (sqrt3/2)x^2 c. x^2/sqrt3 d. x^2/2

If area of an equilateral triangle is 3sqrt(3)\ c m^2, then its height is (a)3 cm (b) sqrt(3)\ c m (c)6 cm (d) 2sqrt(3)\ c m

One vertex of an equilateral triangle is (2,2) and its centroid is (-2/sqrt3,2/sqrt3) then length of its side is (a) 4sqrt(2) (b) 4sqrt(3) (c) 3sqrt(2) (d) 5sqrt(2)

Simplify (sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) e

The equation of the base of an equilateral triangle A B C is x+y=2 and the vertex is (2,-1) . The area of the triangle A B C is: (sqrt(2))/6 (b) (sqrt(3))/6 (c) (sqrt(3))/8 (d) None of these

Prove that the points (2a, 4a), (2a, 6a) and (2a+sqrt3a , 5a) are the vertices of an equilaterall triangle whose side is 2a

CENGAGE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. How many solutions does the equation(8^x + 27^x)/(12^x +18^x) = 7/6hav...

    Text Solution

    |

  2. Is the following computation correct? If not give the correct compu...

    Text Solution

    |

  3. Consider an equilateral triangle having verticals at point A(2/sqrt3 e...

    Text Solution

    |

  4. Find the number of real roots of the equation (x-1)^2+(x-2)^2+(x-3)^2=...

    Text Solution

    |

  5. Find the value of (i) (i^(592)+i^(590)+i^(588)+i^(586)+i^(584))/(i^(58...

    Text Solution

    |

  6. Let z,z(0) be two complex numbers. It is given that abs(z)=1 and the n...

    Text Solution

    |

  7. Show that the equation a z^3+b z^2+ barb z+ bara =0 has a root alpha ...

    Text Solution

    |

  8. If nge3and1,alpha(1),alpha(2),alpha(3),...,alpha(n-1) are the n,nth ...

    Text Solution

    |

  9. How many roots of the equation 3x^4+6x^3+x^2+6x+3=0 are real ?

    Text Solution

    |

  10. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  11. Find the value of k if x^3-3x+k=0 has three real distinct roots.

    Text Solution

    |

  12. Let z=t^2-1+sqrt(t^4-t^2),where t in R is a parameter. Find the locu...

    Text Solution

    |

  13. If|z|=1 , then prove that points represented by sqrt((1+z)//(1-z)) lie...

    Text Solution

    |

  14. If omega is an imaginary fifth root of unity, then find the value of ...

    Text Solution

    |

  15. a ,b ,a n d c are all different and non-zero real numbers on arithmet...

    Text Solution

    |

  16. Let x^2+y^2+x y+1geqa(x+y)AAx ,y in R , then the number of possible i...

    Text Solution

    |

  17. If alpha=e^(i2pi//7)a n df(x)=a0+sum(k=0)^(20)ak x^k , then prove that...

    Text Solution

    |

  18. If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition tha...

    Text Solution

    |

  19. If z is a non real root of root(7)(-1) , then find the value of z^(86...

    Text Solution

    |

  20. The quadratic equation x^2+m x+n=0 has roots which are twice those of ...

    Text Solution

    |