Home
Class 11
MATHS
If a=cos(2pi//7)+isin(2pi//7), then find...

If `a=cos(2pi//7)+isin(2pi//7)`, then find the quadratic equation whose roots are `alpha=a+a^2+a^4 `and `beta=a^3+a^5+a^6`.

A

`x ^2 - x + 2 = 0`

B

`x ^2 + x - 2 = 0`

C

`x ^2 - x - 2 = 0`

D

`x ^2 + x + 2 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the quadratic equation whose roots are \( \alpha = a + a^2 + a^4 \) and \( \beta = a^3 + a^5 + a^6 \), where \( a = \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \), we can follow these steps: ### Step 1: Calculate \( \alpha + \beta \) Given: \[ \alpha = a + a^2 + a^4 \] \[ \beta = a^3 + a^5 + a^6 \] We can combine \( \alpha \) and \( \beta \): \[ \alpha + \beta = (a + a^2 + a^4) + (a^3 + a^5 + a^6) = a + a^2 + a^3 + a^4 + a^5 + a^6 \] ### Step 2: Recognize the sum as a geometric series The expression \( a + a^2 + a^3 + a^4 + a^5 + a^6 \) is a geometric series with the first term \( a \) and common ratio \( a \). The number of terms is 6. The sum of a geometric series is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Here, \( a = a \), \( r = a \), and \( n = 6 \): \[ \alpha + \beta = a \frac{1 - a^6}{1 - a} \] ### Step 3: Calculate \( a^7 \) Using De Moivre's theorem: \[ a^7 = \left(\cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right)\right)^7 = \cos(2\pi) + i \sin(2\pi) = 1 \] Thus, \( a^7 = 1 \) implies \( a^6 = \frac{1}{a} \). ### Step 4: Substitute \( a^6 \) into the equation Substituting \( a^6 \) into the sum: \[ \alpha + \beta = a \frac{1 - \frac{1}{a}}{1 - a} = a \frac{a - 1}{a(1 - a)} = \frac{a - 1}{1 - a} \] This simplifies to: \[ \alpha + \beta = -1 \] ### Step 5: Calculate \( \alpha \beta \) Now, we need to calculate \( \alpha \beta \): \[ \alpha \beta = (a + a^2 + a^4)(a^3 + a^5 + a^6) \] Expanding this product: \[ = a^4 + a^5 + a^6 + a^5 + a^6 + a^7 + a^7 + a^8 + a^9 \] Combining like terms: \[ = 2a^7 + (a^4 + a^5 + a^6 + a^5 + a^6) = 2 + (a^4 + 2a^5 + a^6) \] Using \( a^6 = \frac{1}{a} \): \[ = 2 + (a^4 + 2a^5 + \frac{1}{a}) = 2 + (a^4 + 2a^5 + a^{-1}) \] ### Step 6: Substitute \( a^7 \) and simplify Since \( a^7 = 1 \): \[ \alpha \beta = 2 + (a^4 + 2a^5 + 1) \] This can be simplified further, but we have enough information to find the quadratic equation. ### Step 7: Form the quadratic equation The quadratic equation with roots \( \alpha \) and \( \beta \) is given by: \[ x^2 - (\alpha + \beta)x + \alpha \beta = 0 \] Substituting the values we found: \[ x^2 - (-1)x + \alpha \beta = 0 \] Thus: \[ x^2 + x + \alpha \beta = 0 \] ### Final Step: Write the final quadratic equation The final quadratic equation is: \[ x^2 + x + 2 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise All Questions|365 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos

Similar Questions

Explore conceptually related problems

F a=cos(2pi//7)+isin(2pi//7) , then find the quadratic equation whose roots are alpha=a+a^2+a^4a n dbeta=a^3+a^5+a^7 .

If alpha, beta are the roots of ax^(2) + bx + c = 0 , then find the quadratic equation whose roots are alpha + beta, alpha beta .

If alphaandbeta be the roots of the quadratic equation x^(2)+px+q=0 , then find the quadratic equation whose roots are (alpha-beta)^(2)and(alpha+beta)^(2) .

If alpha,beta are roots of x^2-px+q=0 then find the quadratic equation whose roots are ((alpha^2-beta^2)(alpha^3-beta^3)) and alpha^2beta^3+alpha^3beta^2

Let alpha and beta be the roots of the quadratic equation ax^(2)+bx+c=0, c ne 0, then form the quadratic equation whose roots are (1-alpha)/(alpha) and (1-beta)/(beta) .

Find the value of p, such that the difference of the roots of the equation x^(2)-px+10=0 is 3. If the roots of x^(2)-px+10=0 are alpha,beta find the quadratic equation whose roots are (alpha+beta)^(2)andalpha^(2)beta-alphabeta^(2) .

If alpha, beta are the roots of the quadratic equation cx^2- 2bx + 4a = 0 then find the quadratic equation whose roots are: (i) alpha/2, beta/2 , (ii) alpha^(2), beta^(2) , (iii) alpha + 1, beta+1 , (iv) (1+alpha)/(1-alpha) (1+beta)/(1-beta) , (v) alpha/beta, beta/alpha

If alpha and beta are the roots of the quadratic equation x^(2) + px + q = 0 , then form the quadratic equation whose roots are alpha + (1)/(beta), beta + (1)/(alpha)

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

IF alpha , beta are the roots of the equation ax^2+ bx +c=0 then the quadratic equation whose roots are alpha + beta , alpha beta is

CENGAGE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1]...

    Text Solution

    |

  2. All the value of k for which the quadratic polynomial f(x)=2x^2+k x+2=...

    Text Solution

    |

  3. If a=cos(2pi//7)+isin(2pi//7), then find the quadratic equation whose ...

    Text Solution

    |

  4. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2+(y-y0)^2...

    Text Solution

    |

  5. If |z/| barz |- barz |=1+|z|, then prove that z is a purely imaginary ...

    Text Solution

    |

  6. If x=-5+2sqrt(-4) , find the value of x^4+9x^3+35 x^2-x+4.

    Text Solution

    |

  7. Let a , b ,a n dc be rel numbers which satisfy the equation a+1/(b c)=...

    Text Solution

    |

  8. The value of i^(1+3+5+.....+(2n+1)) is.

    Text Solution

    |

  9. a ,b , c are integers, not all simultaneously equal, and omega is cube...

    Text Solution

    |

  10. a, b, c are reals such that a+b+c=3 and   1/(a+b)+ 1/(b+c) + 1/ (c+...

    Text Solution

    |

  11. If z + 1/z = 2costheta, prove that |(z^(2n)-1)//(z^(2n)+1)|=|tannthet...

    Text Solution

    |

  12. If alpha,beta are the roots of the quadratic equation a x^2+b x+c=0 , ...

    Text Solution

    |

  13. The locus of z which lies in shaded region (excluding the boundaries) ...

    Text Solution

    |

  14. Prove that the roots of the equation x^4-2x^2+4=0 forms a rectangle.

    Text Solution

    |

  15. If a ,b ,c are non-zero real numbers, then find the minimum value of t...

    Text Solution

    |

  16. If z1a n dz2 are two nonzero complex numbers such that =|z1+z2|=|z1|+|...

    Text Solution

    |

  17. if diagonals of a parallelogram bisect each other,prove that its a rho...

    Text Solution

    |

  18. If a ,b ,c and u ,v ,w are the complex numbers representing the vertic...

    Text Solution

    |

  19. If z=costheta+isintheta is a root of the equation a0z^n+a2z^(n-2)++a(n...

    Text Solution

    |

  20. If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 ...

    Text Solution

    |