Home
Class 11
MATHS
If |z1|=|z2|=1, then prove that |z1+z2|=...

If `|z_1|=|z_2|=1,` then prove that `|z_1+z_2|`= `|1/z_1+1/z_2∣`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise All Questions|365 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos

Similar Questions

Explore conceptually related problems

Let z_1,z_2 be complex numbers with |z_1|=|z_2|=1 prove that |z_1+1| +|z_2+1| +|z_1 z_2+1| geq2 .

If |z_1|=|z_2|=dot=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)dot

if |z_1+z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2) if |z_1-z_2|=|z_1|+|z_2|, then prove that a r g(z_1)=a r g(z_2)=pi

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

If |z_1|=|z_2|=.......=|z_n|=1, prove that |z_1+z_2+z_3++z_n|=1/(z_1)+1/(z_2)+1/(z_3)++1/(z_n)

Z_1!=Z_2 are two points in an Argand plane. If a|Z_1|=b|Z_2|, then prove that (a Z_1-b Z_2)/(a Z_1+b Z_2) is purely imaginary.

Z_1!=Z_2 are two points in an Argand plane. If a|Z_1|=b|Z_2|, then prove that (a Z_1-b Z_2)/(a Z_1+b Z_2) is purely imaginary.

If z_1a n dz_2 are complex numbers and u=sqrt(z_1z_2) , then prove that |z_1|+|z_2|=|(z_1+z_2)/2+u|+|(z_1+z_2)/2-u|

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

CENGAGE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' a...

    Text Solution

    |

  2. If a ,b are complex numbers and one of the roots of the equation x^2+a...

    Text Solution

    |

  3. If |z1|=|z2|=1, then prove that |z1+z2|= |1/z1+1/z2∣

    Text Solution

    |

  4. If (a x^2+c)y+(a^(prime)x^2+c^(prime) )=0 and x is a rational function...

    Text Solution

    |

  5. Find the principal argument of the complex number sin(6pi)/5+i(1+cos(6...

    Text Solution

    |

  6. For x in (0,1) , prove that i^(2i+3) ln((i^3x^2+2x+i)/(i x^2+2x+i^3))=...

    Text Solution

    |

  7. The sum of the non-real root of (x^2+x-2)(x^2+x-3)=12 is -1 b. 1 c. -...

    Text Solution

    |

  8. If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1....

    Text Solution

    |

  9. The number of roots of the equation sqrt(x-2)(x^2-4x+3)=0 is (A) Thre...

    Text Solution

    |

  10. If z1, z2a n dz3, z4 are two pairs of conjugate complex numbers, then ...

    Text Solution

    |

  11. Prove that following inequalities: |z/(|z|)-1|lt=|a rgz| (ii) |z-1|lt=...

    Text Solution

    |

  12. If x=1+i is a root of the equation =x^3-i x+1-i=0, then the other real...

    Text Solution

    |

  13. Find the modulus, argument, and the principal argument of the complex ...

    Text Solution

    |

  14. Find the principal argument of the complex number ((1+i)^5(1+sqrt(3i))...

    Text Solution

    |

  15. Column I, Column II: possible argument of z=a+i b a b >0 , p. tan^(...

    Text Solution

    |

  16. If the expression x^2+2(a+b+c)+3(b c+c+a b) is a perfect square, then ...

    Text Solution

    |

  17. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |

  18. The curve y=(lambda+1)x^2+2 intersects the curve y=lambdax+3 in exac...

    Text Solution

    |

  19. Column I, Column II (one of the values of z ) z^4-1=0 , p. z=cospi/...

    Text Solution

    |

  20. Let za n dw be two nonzero complex numbers such that |z|=|w|a n d arg...

    Text Solution

    |