Home
Class 11
MATHS
If z1, z2, z3 are distinct nonzero comp...

If `z_1, z_2, z_3` are distinct nonzero complex numbers and `a ,b , c in R^+` such that `a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|)` Then find the value of `(a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise All Questions|365 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos

Similar Questions

Explore conceptually related problems

If z_1, z_2, z_3 are 3 distinct complex numbers such that 3/|z_2-z_3|-4/|z_3-z_1|=5/|z_1-z_2| then the value of 9/(z_2-z_3)+16/(z_3-z_1)+25/(z_1-z_2) equals

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

Let z_1, z_2,z_3 be three distinct complex numbers satisfying |z_1- 1|=|z_2 - 1|= |z_3-1| .If z_1+z_2+z_3=3 then z_1,z_2,z_3 must represent the vertices of

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If z_1,z_2, z_3 are complex numbers such that |z_1|=|z_2|=|z_3|=|1/z_1+1/z_2+1/z_3|=1 then |z_1+z_2+z_3| is equal to

If A and B represent the complex numbers z_1 and z_2 such that |z_1-z_2|=|z_1+z_2| , then circumcentre of /_\AOB, O being the origin is (A) (z_1+2z_2)/3 (B) (z_1+z_2)/3 (C) (z_1+z_2)/2 (D) (z_1-z_2)/3

Let z_1, z_2, z_3 be three complex numbers and a ,b ,c be real numbers not all zero, such that a+b+c=0a n da z_1+b z_2+c z_3=0. Show that z_1, z_2,z_3 are collinear.

Let z_1, z_2, z_3 be three complex numbers and a ,b ,c be real numbers not all zero, such that a+b+c=0 and a z_1+b z_2+c z_3=0. Show that z_1, z_2,z_3 are collinear.

CENGAGE ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-All Questions
  1. a ,b ,c are three complex numbers on the unit circle |z|=1, such that ...

    Text Solution

    |

  2. If alpha,beta are the roots of lthe equation 2x ^2-3x-6=0, find the eq...

    Text Solution

    |

  3. If z1, z2, z3 are distinct nonzero complex numbers and a ,b , c in R...

    Text Solution

    |

  4. If |z1|=15 and |z2-3-4i|=5,t h e n

    Text Solution

    |

  5. Determine the values o m for which equations 3x^2+4m x+2=0a n d2x^2+3x...

    Text Solution

    |

  6. If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

    Text Solution

    |

  7. A rectangle of maximum area is inscribed in the circle |z-3-4i|=1. If ...

    Text Solution

    |

  8. If alpha,beta are the roots of the equation a x^2+b x+c=0, then find t...

    Text Solution

    |

  9. If (3pi)/2 < alpha < 2pi then the modulus argument of (1+cos 2alpha)+i...

    Text Solution

    |

  10. The value of z satisfying the equation logz+logz^2+dot+logz^n=0 i s ...

    Text Solution

    |

  11. If the difference between the roots of the equation x^2+a x+1=0 is les...

    Text Solution

    |

  12. find the differtiation of (i) tan(secx) (ii) sin(tanx)

    Text Solution

    |

  13. Roots of the equation are (z+1)^5=(z-1)^5 are (a) +-itan(pi/5),+-ita...

    Text Solution

    |

  14. Find the value of a for which one root of the quadratic equation (a^2-...

    Text Solution

    |

  15. If |z1-z0|=|z2-z0|=a and amp((z2-z0)/(z0-z1))=pi/2 , then find z0

    Text Solution

    |

  16. Which of the following represents a points in an Argand pane, equidi...

    Text Solution

    |

  17. If the harmonic mean between roots of (5+sqrt(2))x^2-b x+8+2sqrt(5)=0i...

    Text Solution

    |

  18. If n in N >1 , then the sum of real part of roots of z^n=(z+1)^n is...

    Text Solution

    |

  19. If z1, z2, z3, z4 are the affixes of four point in the Argand plane, z...

    Text Solution

    |

  20. Find the values of the parameter a such that the rots alpha,beta of ...

    Text Solution

    |