Home
Class 11
MATHS
If a1,a2, a3, a4 be the coefficient of f...

If `a_1,a_2, a_3, a_4` be the coefficient of four consecutive terms in the expansion of `(1+x)^n ,` then prove that: `(a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

If a_r is the coefficient of x^r in the expansion of (1+x)^n then a_1/a_0 + 2.a_2/a_1 + 3.a_3/a_2 + …..+n.(a_n)/(a_(n-1)) =

If a_0,a_1,a_2,……a_n be the successive coefficients in the expnsion of (1+x)^n show that (a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n

If the equation z^4+a_1z^3+a_2z^2+a_3z+a_4=0 where a_1,a_2,a_3,a_4 are real coefficients different from zero has a pure imaginary root then the expression (a_3)/(a_1a_2)+(a_1a_4)/(a_2a_3) has the value equal to

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If A,A_1,A_2 and A_3 are the areas of the inscribed and escribed circles of a triangle, prove that 1/sqrtA=1/sqrt(A_1)+1/sqrt(A_2)+1/sqrt(A_3)

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

If a_1,a_2,a_3,.....,a_(n+1) be (n+1) different prime numbers, then the number of different factors (other than1) of a_1^m.a_2.a_3...a_(n+1) , is

If a_r=(cos2rpi+i sin 2rpi)^(1//9) , then prove that |[a_1,a_2,a_3],[a_4,a_5,a_6],[a_7,a_8,a_9]|=0 .

Find the sum of first 24 terms of the A.P. a_1, a_2, a_3, , if it is know that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  2. Prove that (C0+C1)(C1+C2)(C2+C3)(C3+C4)...........(C(n-1)+Cn) = (C0...

    Text Solution

    |

  3. If a1,a2, a3, a4 be the coefficient of four consecutive terms in the e...

    Text Solution

    |

  4. Find the sum of sum(r=1)^n(r^n Cr)/(^n C(r-1) .

    Text Solution

    |

  5. Find the positive integer just greater than (1+0. 0001)^(10000)dot

    Text Solution

    |

  6. Find (i) the last digit, (ii) the last two digits, and (iii) the last ...

    Text Solution

    |

  7. If 10^m divides the number 101^(100)-1 then, find the greatest value o...

    Text Solution

    |

  8. Using the principle of mathematical induction, prove that (2^(3n)-1) i...

    Text Solution

    |

  9. If x is very large as compare to y , then prove that sqrt(x/(x+y))dot...

    Text Solution

    |

  10. Find the coefficient of x^n in the expansion of (1-9x+20 x^2)^(-1)dot

    Text Solution

    |

  11. Prove that the coefficient of x^r in the expansion of (1-2x)^(-1/2) is...

    Text Solution

    |

  12. Find the sum: 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+...

    Text Solution

    |

  13. Show that sqrt3 =1+1/3+(1/3).(3/6)+(1/3)*((3/6)*(5/9)*(7/12)+.......

    Text Solution

    |

  14. Assuming x to be so small that x^2 and higher power of x can be neg...

    Text Solution

    |

  15. Find the sum sumsum(0lt=i < jlt=n-1)j^n Cidot

    Text Solution

    |

  16. Find the condition for which the formula (a+b)^m = a^m+m a^(m-1)b+(m(...

    Text Solution

    |

  17. Find the value of x , for which 1/(sqrt(5+4x)) can be expanded as infi...

    Text Solution

    |

  18. Find the fourth term in the expansion of (1-2x)^(3//2)""dot

    Text Solution

    |

  19. Prove that .^n C0 . ^(2n) Cn- ^n C1 . ^(2n-2)Cn+^n C2 . ^(2n-4)Cn-=2...

    Text Solution

    |

  20. Prove that ^n C0 .^n C0-^(n+1)C1 . ^n C1+^(n+2)C2 . ^n C2-=(-1)^ndot

    Text Solution

    |