Home
Class 11
MATHS
Let f(x+y)=f(x)+f(y)+2x y-1 for all real...

Let `f(x+y)=f(x)+f(y)+2x y-1` for all real `x` and `y` and `f(x)` be a differentiable function. If `f^(prime)(0)=cosalpha,` the prove that `f(x)>0AAx in Rdot`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is differentiable and f^(prime)(0) exists for all real permissible value of a and is equal to sqrt(5a-1-a^2)dot Then f(x) is positive for all real x f(x) is negative for all real x f(x)=0 has real roots Nothing can be said about the sign of f(x)

If f(xy)=(f(x))/y+(f(y))/x holds for all real x and y greater than 0 and f(x) is a differentiable function for all x >0 such that f(e)=1/e , then find f(x)

If f(x)=(f(x))/y+(f(y))/x holds for all real x and y greater than 0a n df(x) is a differentiable function for all x >0 such that f(e)=1/e ,then find f(x)dot

Let f((x+y)/2)=(f(x)+f(y))/2 for all real x and y. If f'(0) exists and equals-1 and f(0)=1, find f(2)

Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists and f'(0) = - sin alpha , then f{f'(0)} is

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

    Text Solution

    |

  2. Prove that lim(x->0) (f(x+h)+f(x-h)-2f(x))/h^2 = f''(x) (without using...

    Text Solution

    |

  3. Let f(x+y)=f(x)+f(y)+2x y-1 for all real x and y and f(x) be a differe...

    Text Solution

    |

  4. If x=e^(y+e^(y+e^y....oo) , where x &gt0,then find(dy)/(dx)

    Text Solution

    |

  5. Let f: RvecR be a function satisfying condition f(x+y^3)=f(x)+[f(y)]^3...

    Text Solution

    |

  6. If x y=e^((x-y)), then find (dy)/(dx)

    Text Solution

    |

  7. (dy)/(dx) for y=tan^(-1){sqrt((1+cosx)/(1-cosx))} ,where 0 lt x lt pi,...

    Text Solution

    |

  8. If y^x=x^y ,"then find"(dy)/(dx)dot

    Text Solution

    |

  9. Differentiate (xcosx)^x with respect to xdot

    Text Solution

    |

  10. If f(xy)=(f(x))/y+(f(y))/x holds for all real x and y greater than 0 a...

    Text Solution

    |

  11. Find (dy)/(dx) for y=x^xdot

    Text Solution

    |

  12. If Pn is the sum of a GdotPdot upto n terms (ngeq3), then prove that (...

    Text Solution

    |

  13. If y=f(a^x)a n df^(prime)(sinx)=(log)e x ,then f i n d ((dy)/(dx)), if...

    Text Solution

    |

  14. if x<1 then 1/(1+x)+(2x)/(1+x^2)+(4x^3)/(1+x^4)+..............oo

    Text Solution

    |

  15. Find the derivative of (sqrt(x)(x+4)^(3/2))/((4x-3)^(4/3))

    Text Solution

    |

  16. If ("lim")(tvecx)(e^tf(x)-e^xf(t))/((t-x)(f(x))^2)=2a n df(0)=1/2, the...

    Text Solution

    |

  17. If y=x^(x^(x^x...oo) , find (dy)/(dx)

    Text Solution

    |

  18. If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a)(e^(sqr...

    Text Solution

    |

  19. Differentiate sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))) with respect to x

    Text Solution

    |

  20. If f(x)=|sinx-|cosx||, then the value of f^'(x) at x=(7pi)/6 is (a) ...

    Text Solution

    |