Home
Class 11
MATHS
If x y=e^((x-y)), then find (dy)/(dx)...

If `x y=e^((x-y)),` then find `(dy)/(dx)`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) given the equation \(xy = e^{(x-y)}\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start with the equation: \[ xy = e^{(x-y)} \] Taking the natural logarithm of both sides, we have: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y=e^(x)sin x , then find (dy)/(dx)

y=e^(x) find (dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .

If x^y=y^x ,then find (dy)/(dx)

If x y=e^(x-y) , find (dy)/(dx) .

If y=x^(x) then Find (dy)/(dx)

If y=(e^(x))/(sinx) , find (dy)/(dx)

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If tan(x+y)=e^(x+y) , then (dy)/(dx)