Home
Class 11
MATHS
Find the value of underset(0leiltjlen)(s...

Find the value of `underset(0leiltjlen)(sumsum)(.^(n)C_(i)+.^(n)C_(j))`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    CENGAGE ENGLISH|Exercise All Questions|886 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

For any n in N, let C_(r) stand for ""^(n)C_(r) , r = 0,1,2,3,…,n and let S= sum_(r=0)^(n) (1)/(C_(r)) Statement-1: underset(0leilt i le n)(sumsum) ((i)/(C_(i))+(j)/(C_(j)))= (n^(2))/(2)S Statement-2: underset(0leilt i le n)(sumsum) ((1)/(C_(i))+(1)/(C_(j)))= nS

Find the value of sumsum_(0leilejlt=n)(i+j)(nC_i+n C_j)dot

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the sum sumsum_(0leiltjlen)"^nC_i

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

CENGAGE ENGLISH-BINOMIAL THEOREM-All Questions
  1. Find the value of sumsum(0leilejlt=n)(i+j)(nCi+n Cj)dot

    Text Solution

    |

  2. Find the value of sumsum(0leilejlt=n)ci^n"" cj^ndot

    Text Solution

    |

  3. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  4. Find the sum sumsum(0leiltjlen) "^nCi"^nCj

    Text Solution

    |

  5. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  6. Find the sum sumsum(0leiltjlen)"^nCi

    Text Solution

    |

  7. Find the coefficient of x^4 in the expansion of (x/2-3/x^2)^10.

    Text Solution

    |

  8. Find the term in(3sqrt(((a)/(sqrt(b))) + (sqrt((b)/ ^3sqrt(a))))^(21) ...

    Text Solution

    |

  9. Using the binomial theorem, evaluate (102)^5 .

    Text Solution

    |

  10. Find the 6th term in expansion of (2x^2-1//3x^2)^(10)dot

    Text Solution

    |

  11. Find a if the 7th and 18th terms of the expansion (2+a)^(50) are equal...

    Text Solution

    |

  12. Find n , if the ratio of the fifth term from the beginning to the ...

    Text Solution

    |

  13. Simplify: x^5+10 x^4a+40 x^3a^2+80 x^2a^3+80 x a^4+32 a^5dot

    Text Solution

    |

  14. Find the value of (18^3+7^3+3xx18xx7xx25) /(3^6+6xx243xx2+15xx18xx4+20...

    Text Solution

    |

  15. Find the approximation of (0. 99)^5 using the first three terms of its...

    Text Solution

    |

  16. If for n in N ,sum(k=0)^(2n)(-1)^k(^(2n)Ck)^2=A , then find the value...

    Text Solution

    |

  17. There are two bags each of which contains n balls. A man has to sele...

    Text Solution

    |

  18. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  19. Prove that sum(r=0)^(2n)(r. ^(2n)Cr)^2=n^(4n)C(2n) .

    Text Solution

    |

  20. If k a n d n are positive integers and sk=1^k+2^k+3^k++n^k , then prov...

    Text Solution

    |