Home
Class 11
MATHS
Using the first principle, prove that: d...

Using the first principle, prove that: `d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x))+g(x)d/(dx)(f(x))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

Using first principles, prove that (d)/( dx) ((1)/( f(x))) = (-f' (x))/( {f (x) }^2) .

If f(x)a n dg(x) are two differentiable functions, show that f(x)g(x) is also differentiable such that d/(dx)[f(x)g(x)]=f(x)d/(dx){g(x)}+g(x)d/(dx){f(x)}

If f(x)=(x^2)/(|x|) , write d/(dx)(f(x))

If f(x)a n dg(f) are two differentiable functions and g(x)!=0 , then show trht (f(x))/(g(x)) is also differentiable d/(dx){(f(x))/(g(x))}=(g(x)d/x{f(x)}-g(x)d/x{g(x)})/([g(x)]^2)

If f(x)a n dg(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that d/(dx){f(x)+-g(x)}=d/(dx){f(x)}+-d/(dx){g(x)}

Differentiate by first principle f(x)=sqrt(3x+4)

Statement-1: int(sinx)^x(xcotx+logsinx)dx=x(sinx)^x Statement-2: d/dx(f(x))^(g(x))=(f(x))^(g(x))d/dx[g(x)logf(x)] (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. Differentiate the function with respect to x using the first principle...

    Text Solution

    |

  2. If x=t^2,y=t^3,t h e n(d^2y)/(dx^2)= (a)3/2 (b) 3/((4t)) (c) 3/(2...

    Text Solution

    |

  3. Using the first principle, prove that: d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x...

    Text Solution

    |

  4. If y=x+e^x, then (d^2x)/(dy^2) is (a) e^x (b) - e^x/((1+e^x)^3) (c) -e...

    Text Solution

    |

  5. If y=(1+x^(1/4))(1+x^(1/2))(1-x^(1/4)) , then find (dy)/(dx)dot

    Text Solution

    |

  6. Let f(x)=(lim)(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f...

    Text Solution

    |

  7. If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

    Text Solution

    |

  8. A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+...

    Text Solution

    |

  9. If y=sqrt((1-cos2x)/(1+cos2x),)x in (0,pi/2)uu(pi/2,pi), then find (dy...

    Text Solution

    |

  10. If x=logp and y=1/p ,then (a)(d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+...

    Text Solution

    |

  11. If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)...

    Text Solution

    |

  12. Let y=1n(1+cosx)^2. Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal

    Text Solution

    |

  13. Find (dy)/(dx)"for"y=xsinxlogxdot

    Text Solution

    |

  14. If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)...

    Text Solution

    |

  15. Differentiate y=(e^x)/(1+sinx)

    Text Solution

    |

  16. Suppose that f(0)=0a n df^(prime)(0)=2, and let g(x)=f(-x+f(f(x)))dot ...

    Text Solution

    |

  17. If y=sqrt((1-x)/(1+x)), prove that (1-x^2)dy/(dx)+y=0

    Text Solution

    |

  18. If g(x)=(f(x))/((x-a)(x-b)(x-c)),where f(x) is a polynomial of degree ...

    Text Solution

    |

  19. If f(x)=cosxdotcos2xdotcos4xdotcos8xdotcos16 x , then find f^(prime)(p...

    Text Solution

    |

  20. f(x)=e^(-1/x),w h e r ex >0, Let for each positive integer n ,Pn be th...

    Text Solution

    |