Home
Class 11
MATHS
Let y=1n(1+cosx)^2. Then the value of (d...

Let `y=1n(1+cosx)^2`. Then the value of `(d^2y)/(dx^2)+2/(e^(y/2))` equal

A

`0`

B

`2/(1+cosx)`

C

`4/(1+cosx)`

D

`(-4)/((1+cos"x")^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{d^2y}{dx^2} + \frac{2}{e^{y/2}}\) where \(y = \ln((1 + \cos x)^2)\). ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = \ln((1 + \cos x)^2) \] Using the property of logarithms, we can simplify: \[ y = 2 \ln(1 + \cos x) \] Now, differentiate \(y\): \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + \cos x} \cdot (-\sin x) = \frac{-2 \sin x}{1 + \cos x} \] ### Step 2: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now, we need to differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{-2 \sin x}{1 + \cos x}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(1 + \cos x)(-2 \cos x) - (-2 \sin x)(-\sin x)}{(1 + \cos x)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{-2 \cos x (1 + \cos x) + 2 \sin^2 x}{(1 + \cos x)^2} \] Using the identity \(\sin^2 x + \cos^2 x = 1\): \[ \sin^2 x = 1 - \cos^2 x \] Thus: \[ \frac{d^2y}{dx^2} = \frac{-2 \cos x - 2 \cos^2 x + 2 - 2 \cos^2 x}{(1 + \cos x)^2} = \frac{2 - 2 \cos x - 4 \cos^2 x}{(1 + \cos x)^2} \] ### Step 3: Calculate \(e^{y/2}\) Now we calculate \(e^{y/2}\): \[ y = 2 \ln(1 + \cos x) \implies \frac{y}{2} = \ln(1 + \cos x) \] Thus: \[ e^{y/2} = 1 + \cos x \] ### Step 4: Substitute into the expression Now we substitute back into the expression: \[ \frac{d^2y}{dx^2} + \frac{2}{e^{y/2}} = \frac{2 - 2 \cos x - 4 \cos^2 x}{(1 + \cos x)^2} + \frac{2}{1 + \cos x} \] To combine these, we need a common denominator: \[ \frac{2 - 2 \cos x - 4 \cos^2 x + 2(1 + \cos x)}{(1 + \cos x)^2} = \frac{2 - 2 \cos x - 4 \cos^2 x + 2 + 2 \cos x}{(1 + \cos x)^2} \] This simplifies to: \[ \frac{4 - 4 \cos^2 x}{(1 + \cos x)^2} = \frac{4(1 - \cos^2 x)}{(1 + \cos x)^2} = \frac{4 \sin^2 x}{(1 + \cos x)^2} \] ### Step 5: Final Result Since \(4 \sin^2 x\) is always non-negative, we conclude that: \[ \frac{d^2y}{dx^2} + \frac{2}{e^{y/2}} = 0 \] ### Final Answer: The value of \(\frac{d^2y}{dx^2} + \frac{2}{e^{y/2}}\) is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let y=ln (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y//2)) equals

If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

If y=e^x(sin x+cosx) prove that (d^2y)/(dx^2)-2 (dy)/(dx)+2y=0 .

If y=e^x(sinx+cosx) prove that (d^2y)/(dx^2)-2(dy)/(dx)+2y=0 .

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=e^(-x)cosx, show that (d^(2)y)/(dx^(2))=2e^(-x)sinx.

"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

If y=2sinx+3cosx , show that (d^2y)/(dx^2)+y=0 .

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. If x=logp and y=1/p ,then (a)(d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+...

    Text Solution

    |

  2. If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)...

    Text Solution

    |

  3. Let y=1n(1+cosx)^2. Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal

    Text Solution

    |

  4. Find (dy)/(dx)"for"y=xsinxlogxdot

    Text Solution

    |

  5. If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)...

    Text Solution

    |

  6. Differentiate y=(e^x)/(1+sinx)

    Text Solution

    |

  7. Suppose that f(0)=0a n df^(prime)(0)=2, and let g(x)=f(-x+f(f(x)))dot ...

    Text Solution

    |

  8. If y=sqrt((1-x)/(1+x)), prove that (1-x^2)dy/(dx)+y=0

    Text Solution

    |

  9. If g(x)=(f(x))/((x-a)(x-b)(x-c)),where f(x) is a polynomial of degree ...

    Text Solution

    |

  10. If f(x)=cosxdotcos2xdotcos4xdotcos8xdotcos16 x , then find f^(prime)(p...

    Text Solution

    |

  11. f(x)=e^(-1/x),w h e r ex >0, Let for each positive integer n ,Pn be th...

    Text Solution

    |

  12. If ai, bi in N for i 1,2,3, then coefficient of x in the determinant;|...

    Text Solution

    |

  13. If d/(dx)[(x^m-A1x^(m-1)+A2x^(m-2)-.......+(-1)^m Am)e^x]=x^m e^x , f...

    Text Solution

    |

  14. If y= |[sinx,cosx,sinx],[cosx,-sinx,cosx],[x,1,1]|, find (dy)/(dx)

    Text Solution

    |

  15. Let f(x)a n dg(x) be two function having finite nonzero third-order de...

    Text Solution

    |

  16. Differentiate log sinx w.r.t. sqrt(cosx).

    Text Solution

    |

  17. If cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(sinx)/x , then find the value o...

    Text Solution

    |

  18. Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=...

    Text Solution

    |

  19. Find the derivative of f(tan x) w.r.t. g (sec x) at x=(pi)/(4), where ...

    Text Solution

    |

  20. If f(x)=cos^(-1)(1/sqrt(13))(2cosx-3sinx) +sin^(-1)(1/sqrt(13))(2co...

    Text Solution

    |