Home
Class 11
MATHS
Let g(x) be the inverse of an invertibl...

Let `g(x)` be the inverse of an invertible function `f(x),` which is differentiable for all real `xdot` Then `g^('')(f(x))` equals. (a)`-(f^('')(x))/((f^'(x))^3)` (b) `(f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x))` (c)`(f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x) which is derivable at x=3 . If f(3)=9 and f^(prime)(3)=9 , write the value of g^(prime)(9) .

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

Suppose f and g are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all x and f^(prime) and g' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x)) is equal (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then (a) f^(prime)(a^+)=varphi(a) (b) f^(prime)(a^-)=-varphi(a) (c) f^(prime)(a^+)=f^(prime)(a^-) (d) none of these

If f^(prime)(x)=8x^3-2x ,f(2)=8, find f(x)

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f^(prime)(h^(prime)(g^(prime)(x))) .

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. Find (dy)/(dx) for the function: y=x^3 + e^(2x)

    Text Solution

    |

  2. Find (dy)/(dx) for the function: y=logsqrt(sinsqrt(e^x))

    Text Solution

    |

  3. Let g(x) be the inverse of an invertible function f(x), which is dif...

    Text Solution

    |

  4. Find (dy)/(dx) for the function: y= x^(1/2) + Sin 2x

    Text Solution

    |

  5. Find (dy)/(dx) for the function: y= Sin 5x

    Text Solution

    |

  6. Differentiate the function f(x)=x^99 with respect to xdot

    Text Solution

    |

  7. If f(x)=x+tanx and g(x) is the inverse of f(x), then differentiat...

    Text Solution

    |

  8. Find (dy)/(dx) for y=cos 55x

    Text Solution

    |

  9. Find (dy)/(dx) for y=e^(6x)

    Text Solution

    |

  10. Let f: R → R be a one-one onto differentiable function, such that f(2)...

    Text Solution

    |

  11. If f''(x)=-f(x) and g(x)=f^(prime)(x) and F(x)=(f(x/2))^2+(g(x/2))^2 a...

    Text Solution

    |

  12. Find (dy)/(dx) for the function: y=sin 4x - (1/x^4)

    Text Solution

    |

  13. Find (dy)/(dx) for the function: y=sin 2x - x^4 + e^(-3x)

    Text Solution

    |

  14. If x=acostheta,y=bsintheta, then prove that (d^3y)/(dx^3)=(3b)/(a^3)co...

    Text Solution

    |

  15. If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a)x(dy)/(dx)-y (b) ...

    Text Solution

    |

  16. A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all...

    Text Solution

    |

  17. If u=x^2 and x=s+3t, y=2s-t, then (d^2u)/(ds^2) is (a) 5/2 t (b) 20t^...

    Text Solution

    |

  18. If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+...

    Text Solution

    |

  19. If f(x)=sinx+e^x , then f''(x)

    Text Solution

    |

  20. "If "y^(2)=ax^(2)+bx+c," then "y^(3)(d^(2)y)/(dx^(2)) is

    Text Solution

    |