Home
Class 11
MATHS
If S=a1+a2+......+an,ai in R^+ for i=1 ...

If `S=a_1+a_2+......+a_n,a_i in R^+` for i=1 to n, then prove that `S/(S-a_1)+S/(S-a_2)+......+S/(S-a_n) ge n^2/(n-1), AA n ge 2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise All Questions|9 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise All Questions|491 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1, a_2, a_3 ......a_n (n>= 2) are real and (n-1) a_1^2 -2na_2 < 0 then prove that at least two roots of the equation x^n+a_1 x^(n-1) +a_2 x^(n-2) +......+a_n = 0 are imaginary.

If 0lta_1lta_2lt....lta_n , then prove that tan^(-1)((a_1x-y) /(x+a_1y))+tan^(-1)((a_2-a_1) /(1+a_2a_1))+tan^(-1)((a_3-a_2)/(1+a_3a_2))+.......+tan^(-1)((a_n-a_(n-1)) /(1+a_n a_(n-1)))+tan^(-1)(1/(a_n))=tan^(-1)(x/y)dot

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

CENGAGE ENGLISH-SEQUENCES AND SERIES-All Questions
  1. Prove that (b^2+c^2)/(b+c)+(c^2+a^2)/(c+a)+(a^2+b^2)/(a+b)> a+b+c

    Text Solution

    |

  2. If y z+z x+x y=12 , and x , y , z are positive values, find the great...

    Text Solution

    |

  3. If S=a1+a2+......+an,ai in R^+ for i=1 to n, then prove that S/(S-a1)...

    Text Solution

    |

  4. If m >1,n in N show that 1^m+2^m+2^(2m)+2^(3m)++2^(n m-m)> n^(1-m)(2...

    Text Solution

    |

  5. If a ,b >0 such that a^3+b^3=2, then show that a+blt=2.

    Text Solution

    |

  6. Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

    Text Solution

    |

  7. In a triangle A B C prove that a//(a+c)+b//(c+a)+c//(a+b)<2

    Text Solution

    |

  8. Find the least value of secA+secB+secC in an acute angled triangle.

    Text Solution

    |

  9. Prove that [(n+1)//2]^n >(n !)dot

    Text Solution

    |

  10. If a1+a2+a3+......+an=1 AA ai > 0, i=1,2,3,......,n, then find the ma...

    Text Solution

    |

  11. If a ,b ,c are positive, then prove that a//(b+c)+b//(c+a)+c//(a+b)geq...

    Text Solution

    |

  12. If (log)(10)(x^3+y^3)-(log)(10)(x^2+y^2-x y)lt=2, and x ,y are positiv...

    Text Solution

    |

  13. If (log)2(a+b)+(log)2(c+d)geq4. Then find the minimum value of the exp...

    Text Solution

    |

  14. If a+b+c=1, then prove that 8/(27a b c)>{1/a-1}{1/b-1}{1/c-1}> 8.

    Text Solution

    |

  15. If a ,b , a n dc are distinct positive real numbers such that a+b+c=1,...

    Text Solution

    |

  16. Prove that b^2c^2+c^2a^2+a^2b^2> a b cxx(a+b+c)(a ,b ,c >0) .

    Text Solution

    |

  17. Find the minimum value of 4sin^(2)x+4cos^(2)x .

    Text Solution

    |

  18. Prove that (a b+x y)(a x+b y)>4a b x y(a , b ,x ,y >0)dot

    Text Solution

    |

  19. The minimum value of the sum of real number a^-5,a^-4,3a^-3,1,a^8 and ...

    Text Solution

    |

  20. If a1,a2,------ ,an are positive real numbers whose product is a fixe...

    Text Solution

    |