Home
Class 11
MATHS
If (sinx)(cosy)=1/2, then (d^2y)/(dx^2) ...

If `(sinx)(cosy)=1/2,` then `(d^2y)/(dx^2)` at `(pi/4,pi/4)` is

A

`-4`

B

`-2`

C

`-6`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative \(\frac{d^2y}{dx^2}\) given the equation \((\sin x)(\cos y) = \frac{1}{2}\) at the point \((\frac{\pi}{4}, \frac{\pi}{4})\). ### Step 1: Differentiate the given equation We start with the equation: \[ \sin x \cos y = \frac{1}{2} \] Differentiating both sides with respect to \(x\): \[ \frac{d}{dx}(\sin x \cos y) = \frac{d}{dx}\left(\frac{1}{2}\right) \] Using the product rule on the left side: \[ \cos x \cos y + \sin x \left(-\sin y \frac{dy}{dx}\right) = 0 \] ### Step 2: Rearranging the equation Rearranging the differentiated equation gives: \[ \cos x \cos y = \sin x \sin y \frac{dy}{dx} \] Thus, \[ \frac{dy}{dx} = \frac{\cos x \cos y}{\sin x \sin y} \] This can be simplified to: \[ \frac{dy}{dx} = \cot x \cot y \] ### Step 3: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx} = \cot x \cot y\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(\cot x \cot y) \] Using the product rule again: \[ \frac{d^2y}{dx^2} = -\csc^2 x \cot y + \cot x (-\csc^2 y \frac{dy}{dx}) \] Substituting \(\frac{dy}{dx} = \cot x \cot y\): \[ \frac{d^2y}{dx^2} = -\csc^2 x \cot y - \cot x \csc^2 y \cot x \cot y \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\csc^2 x \cot y - \cot^2 x \csc^2 y \cot y \] ### Step 4: Evaluate at \(x = \frac{\pi}{4}, y = \frac{\pi}{4}\) Now we substitute \(x = \frac{\pi}{4}\) and \(y = \frac{\pi}{4}\): - \(\cot\left(\frac{\pi}{4}\right) = 1\) - \(\csc^2\left(\frac{\pi}{4}\right) = 2\) Substituting these values into the equation: \[ \frac{d^2y}{dx^2} = -2(1) - (1^2)(2)(1) = -2 - 2 = -4 \] ### Final Answer Thus, the value of \(\frac{d^2y}{dx^2}\) at \((\frac{\pi}{4}, \frac{\pi}{4})\) is: \[ \frac{d^2y}{dx^2} = -4 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4)) is …….

If tan x cot y= sec alpha where alpha is constant and alpha in (-(pi)/(2), (pi)/(2))then (d ^(2)y)/(dx ^(2))at ((pi)/(4), (pi)/(4)) equal to:

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

If y=(log)_(sinx)(tanx),t h e n(((dy)/(dx)))_(pi/4)"is equal to" (a) 4/(log2) (b) -4log2 (c) (-4)/(log2) (d) none of these

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If y=logtan(pi/4+x/2),\ show that (dy)/(dx)=secx . Also find the value of (d^2y)/(dx^2) at x=pi/4

If (2+sinx)(dy)/(dx)+(y+1)cosx=0 and y(0)=1 , then y((pi)/(2)) is equal to

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x...

    Text Solution

    |

  2. If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a)11-...

    Text Solution

    |

  3. If (sinx)(cosy)=1/2, then (d^2y)/(dx^2) at (pi/4,pi/4) is

    Text Solution

    |

  4. Suppose p(x)=a0+a1x+a2x^2+...+an x^ndot If |p(x)|lt=|e^(x-1)-1| for al...

    Text Solution

    |

  5. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  6. A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x)....

    Text Solution

    |

  7. Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such t...

    Text Solution

    |

  8. Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1...

    Text Solution

    |

  9. Find (dy)/(dx) for the functions: y=x^3e^xsinx

    Text Solution

    |

  10. d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b)...

    Text Solution

    |

  11. If y=tan^(-1)(1/(1+x+x^2))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7...

    Text Solution

    |

  12. Let g(x) be the inverse of an invertible function f(x) which is diff...

    Text Solution

    |

  13. If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2...

    Text Solution

    |

  14. Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim(x->0)((f...

    Text Solution

    |

  15. If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(...

    Text Solution

    |

  16. Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|, where p is a cons...

    Text Solution

    |

  17. Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

    Text Solution

    |

  18. The derivative of an even function is always an odd function.

    Text Solution

    |

  19. If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)),t h e n d(dy)/...

    Text Solution

    |

  20. Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) a...

    Text Solution

    |