Home
Class 11
MATHS
Let f(x y)=f(x)f(y)AAx , y in Ra n df i...

Let `f(x y)=f(x)f(y)AAx , y in Ra n df` is differentiable at `x=1` such that `f^(prime)(1)=1.` Also, `f(1)!=0,f(2)=3.` Then find `f^(prime)(2)dot`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Let f: Rvec satisfying |f(x)|lt=x^2AAx in R be differentiable at x=0. The find f^(prime)(0)dot

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

If f^(prime)(x)=x+b ,f(1)=5,f(2)=13 , find f(x)dot

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

If f(x+f(y))=f(x)+yAAx ,y in R a n df(0)=1, then find the value of f(7)dot

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)...

    Text Solution

    |

  2. A function f satisfies the condition f(x)=f^(prime)(x)+f''(x)+f'''(x)....

    Text Solution

    |

  3. Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such t...

    Text Solution

    |

  4. Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1...

    Text Solution

    |

  5. Find (dy)/(dx) for the functions: y=x^3e^xsinx

    Text Solution

    |

  6. d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))] is (a) 1/(2(1+x)sqrt(x)) (b)...

    Text Solution

    |

  7. If y=tan^(-1)(1/(1+x+x^2))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7...

    Text Solution

    |

  8. Let g(x) be the inverse of an invertible function f(x) which is diff...

    Text Solution

    |

  9. If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2...

    Text Solution

    |

  10. Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim(x->0)((f...

    Text Solution

    |

  11. If cosy=xcos(a+y), with cosa!=+-1, prove that (dy)/(dx)=(cos^2(a+y))/(...

    Text Solution

    |

  12. Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|, where p is a cons...

    Text Solution

    |

  13. Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

    Text Solution

    |

  14. The derivative of an even function is always an odd function.

    Text Solution

    |

  15. If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)),t h e n d(dy)/...

    Text Solution

    |

  16. Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) a...

    Text Solution

    |

  17. Find (dy)/(dx) for y=tan^(-1){(1-cosx)/(sinx)},-piltxltpi.

    Text Solution

    |

  18. If x=y+sin^2x then at x=0 ,(dy)/dx=

    Text Solution

    |

  19. Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x.

    Text Solution

    |

  20. If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= for x>20

    Text Solution

    |