Home
Class 11
MATHS
If y=(sinx)^(tanx),t h e n(dy)/(dx)= ...

If `y=(sinx)^(tanx),t h e n(dy)/(dx)=` (a)`(sinx)^(tanx)(1+sec^2xlogsinx)` (b)`tanx(sinx)^(tanx-1)cosx` (c)`(sinx)^(tanx)` (d)`sec^2xlogsinx` `tanx(sinx)^(tanx-1)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

intdx/(sinx+tanx)

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

if y=x^2sinx+(3x)/(tanx) , then (dy)/(dx) will be

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=secx+tanx then prove that (d^2y)/(dx^(2))=cosx/((1-sinx)^(2)) .

If y=tanx+secx , prove that (d^2y)/(dx^2)=(cosx)/((1-sinx)^2)

inte^(tanx)(secx-sinx)dx is equal to