Home
Class 11
MATHS
Prove that a^4+b^4+c^4> a b c(a+b+c),w h...

Prove that `a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise All Questions|9 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise All Questions|491 Videos

Similar Questions

Explore conceptually related problems

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

In Delta A B C , prove that t a n A+t a n B+t a n Cgeq3sqrt(3),w h e r eA ,B ,C are acute angles.

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If f(x)=a x^2+b x+a^2+b^2+c^2-a b-b c-c a ,w h e r ea ,b ,c are distinct reals, has imaginary roots then (a) (a-b)^2+(b-c)^2+(c-a)^2>0 (b) f(0)>0 (c) f(-1)>0 (d) f(0)<0

If the equation of plane containing the line x-y+z=0a n dx+y+z-2=0 and which is farthest from origin is a x+b y+c z=d ,w h e r ea , b ,c ,d in N , then find the minimum value of (a+b+c+d)dot

Suppose A, B, C are defined as A=a^2b+a b^2-a^2c-a c^2 , B=b^2c+b c^2-a^2b-a b^2,and C=a^2c +'a c^2-b^2' c-b c^2, w h e r ea > b > c >0 and the equation A x^2+B x+C=0 has equal roots, then a ,b ,c are in AdotPdot b. GdotPdot c. HdotPdot d. AdotGdotPdot

Prove that: |(-2a , a+b, a+c),( b+a,-2b, b+c),( c+a , c+b,-2c)|=4(a+b)(b+c)(c+a)

Use the factor theorem to find the value of k for which (a+2b),w h e r ea ,b!=0 is a factor of a^4+32 b^4+a ^3 b(k+3)dot

Find the number of polynomials of the form x^3+a x^2+b x+c that are divisible by x^2+1,w h e r ea , b ,c in {1,2,3,9,10}dot

CENGAGE ENGLISH-SEQUENCES AND SERIES-All Questions
  1. If a ,b ,c are real numbers such that 0 < a < 1,0 < b < 1,0 < c < 1,a+...

    Text Solution

    |

  2. If a^2+b^2+c^2=x^2+y^2+z^2=1, then show that a x+b y+c z leq1.

    Text Solution

    |

  3. Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

    Text Solution

    |

  4. Prove that the greatest value of x y is c^3/sqrt(2a b), if a^2x^4+b^2y...

    Text Solution

    |

  5. If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)...

    Text Solution

    |

  6. If y = sin^-1(10x) + pi/2 then find the value of dy/dx .

    Text Solution

    |

  7. If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

    Text Solution

    |

  8. If Cr=(n !)/([r !(n-r)]), the prove that sqrt(C1)+sqrt(C2)+.......sq...

    Text Solution

    |

  9. If x and y are positive real numbers and m, n are any positive integ...

    Text Solution

    |

  10. The least value of the expression 2(log)(10)x-(log)x(0. 01),forx >1, i...

    Text Solution

    |

  11. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  12. True / False For every intger n >1 , the inequality (n !)^(1//n)<(n+1)...

    Text Solution

    |

  13. If x ,y in R^+ satisfying x+y=3, then the maximum value of x^2y is.

    Text Solution

    |

  14. For anyx ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x...

    Text Solution

    |

  15. If a ,b ,a n dc are positive and 9a+3b+c=90 , then the maximum value o...

    Text Solution

    |

  16. Given that x ,y ,z are positive real such that x y z=32. If the minimu...

    Text Solution

    |

  17. If the product of n positive numbers is n^n , then their sum is (a)...

    Text Solution

    |

  18. If a,b,c are different positive real numbers such that b+c−a,c+a−b and...

    Text Solution

    |

  19. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  20. Find the maximum value of (7−x)^4 (2+x)^5 when x lies between −2 and ...

    Text Solution

    |