Home
Class 11
MATHS
Prove that the greatest value of x y is ...

Prove that the greatest value of `x y` is `c^3/sqrt(2a b)`, if `a^2x^4+b^2y^4=c^6dot`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise All Questions|9 Videos
  • STRAIGHT LINES

    CENGAGE ENGLISH|Exercise All Questions|491 Videos

Similar Questions

Explore conceptually related problems

Prove that the greatest value of x y is c^3//sqrt(2a b)dot if a^2x^4+b^4y^4=c^6dot

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If sqrt(a+i b)=x+i y ,\ then possible value of sqrt(a-i b) is a. x^2+y^2 b. sqrt(x^2+y^2) c. x+i y d. x-i y e. sqrt(x^2-y^2)

If 3/4 y =6-1/3c, then what is the value of 2x + 9/2y ?

Consider a circle x^2+y^2+a x+b y+c=0 lying completely in the first quadrant. If m_1a n dm_2 are the maximum and minimum values of y/x for all ordered pairs (x ,y) on the circumference of the circle, then the value of (m_1+m_2) is (a) (a^2-4c)/(b^2-4c) (b) (2a b)/(b^2-4c) (c) (2a b)/(4c-b^2) (d) (2a b)/(b^2-4a c)

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 , then the minimum possible value of c is (a) -sqrt(2) (b) sqrt(2) (c) 2 (d) 1

Prove that the value of each the following determinants is zero: |[(a^x+a^(-x))^2,(a^x-a^(-x))^2 ,1],[(b^y+b^(-y))^2,(b^y-b^(-y))^2 ,1],[(c^z+c^(-z))^2,(c^z-c^(-z))^2, 1]|

Let x ,y ,z ,t be real numbers x^2+y^2=9, z^2+t^2=4 , and xt-y z=6 Then the greatest value of P=xz is a. 2 b. 3 c. 4 d. 6

If two lines represented by x^4+x^3y+c x^2y^2-x y^3+y^4=0 bisector of the angle between the other two, then the value of c is (a) 0 (b) -1 (c) 1 (d) -6

If two lines represented by x^4+x^3y+c x^2y^2-x y^3+y^4=0 bisect the angle between the other two, then the value of c is (a) 0 (b) -1 (c) 1 (d) -6

CENGAGE ENGLISH-SEQUENCES AND SERIES-All Questions
  1. If a^2+b^2+c^2=x^2+y^2+z^2=1, then show that a x+b y+c z leq1.

    Text Solution

    |

  2. Prove that a^4+b^4+c^4> a b c(a+b+c),w h e r ea ,b ,c > 0.

    Text Solution

    |

  3. Prove that the greatest value of x y is c^3/sqrt(2a b), if a^2x^4+b^2y...

    Text Solution

    |

  4. If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)...

    Text Solution

    |

  5. If y = sin^-1(10x) + pi/2 then find the value of dy/dx .

    Text Solution

    |

  6. If a+b=1,a >0, prove that (a+1/a)^2+(b+1/b)^2geq(25)/2dot

    Text Solution

    |

  7. If Cr=(n !)/([r !(n-r)]), the prove that sqrt(C1)+sqrt(C2)+.......sq...

    Text Solution

    |

  8. If x and y are positive real numbers and m, n are any positive integ...

    Text Solution

    |

  9. The least value of the expression 2(log)(10)x-(log)x(0. 01),forx >1, i...

    Text Solution

    |

  10. If a , b , c , are positive real numbers, then prove that (2004, 4M) {...

    Text Solution

    |

  11. True / False For every intger n >1 , the inequality (n !)^(1//n)<(n+1)...

    Text Solution

    |

  12. If x ,y in R^+ satisfying x+y=3, then the maximum value of x^2y is.

    Text Solution

    |

  13. For anyx ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x...

    Text Solution

    |

  14. If a ,b ,a n dc are positive and 9a+3b+c=90 , then the maximum value o...

    Text Solution

    |

  15. Given that x ,y ,z are positive real such that x y z=32. If the minimu...

    Text Solution

    |

  16. If the product of n positive numbers is n^n , then their sum is (a)...

    Text Solution

    |

  17. If a,b,c are different positive real numbers such that b+c−a,c+a−b and...

    Text Solution

    |

  18. Find the greatest value of x^2 y^3, where x and y lie in the first qua...

    Text Solution

    |

  19. Find the maximum value of (7−x)^4 (2+x)^5 when x lies between −2 and ...

    Text Solution

    |

  20. If a1, a2,...... ,an >0, then prove that (a1)/(a2)+(a2)/(a3)+(a3)/(a4...

    Text Solution

    |