Home
Class 11
MATHS
The nth derivative of the function f(x)...

The `nth` derivative of the function `f(x)=1/(1-x^2)` [where `in(-1,1)` at the point `x=0` where `n` is even is (a) `0` (b) `n!` (c) `n^nC_2` (d) `2^nC_2`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • LINEAR INEQUALITIES

    CENGAGE ENGLISH|Exercise All Questions|68 Videos

Similar Questions

Explore conceptually related problems

Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) is not differentiable, is: (A) 0 (B) 1 (C) 2 (D) 3

Consider the function f(x)={xsinpi/x ,forx >0 0,forx=0 The, the number of point in (0,1) where the derivative f^(prime)(x) vanishes is 0 (b) 1 (c) 2 (d) infinite

Let f(x) =x^(n+1)+ax^n, "where " a gt 0 . Then, x=0 is point of

If a, b (altb) be the points of discontinuity of function f(f(f(x))) , where f(x)=1/(1-x),x!=1 , then int_a^b f(x)/(f(x)+f(1-x))dx= (A) 0 (B) 1/2 (C) 1 (D) 2

If ("lim")_(xrarr0)({(a-n)n x-tanx}sinn x)/(x^2)=0, where n is nonzero real number, the a is 0 (b) (n+1)/n (c) n (d) n+1/n

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

m points on one straight line are joined to n points on another straight line. The number of points of intersection of the line segments thus formed is (A) ^mC-2.^nC_2 (B) (mn(m-1)(n-1))/4 (C) (^mC_2.^nC_2)/2 (D) ^mC_2+^nC_2

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

If f(x)={0 ,where x=n/(n+1),n=1,2,3.... and 1 else where then the value of int_0^2 f(x) dx is

The function f(x)=(sec^(-1)x)/(sqrt(x-[x]), where [x] denotes the greatest integer less than or equal to x , is defined for all x in (a) R (b) R-{(-1,1)uu{n"|"n in Z}} (c) R-(0,1) (d) R-{n|n in N}

CENGAGE ENGLISH-LIMITS AND DERIVATIVES-All Questions
  1. If y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/((sqrt(a-x)+sqrt(x-b)) ,then (d...

    Text Solution

    |

  2. If y= 7x^5, then (dy)/(dx)

    Text Solution

    |

  3. The nth derivative of the function f(x)=1/(1-x^2) [where in(-1,1) at ...

    Text Solution

    |

  4. Let u(x) and v(x) be differentiable functions such that (u(x))/(v(x))=...

    Text Solution

    |

  5. Statement 1: Let f: R -> R be a real-valued function AAx ,y in R such...

    Text Solution

    |

  6. Statement 1: For f(x)=sinx ,f^(prime)(pi)=f^(prime)(3pi)dot Statement...

    Text Solution

    |

  7. f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y i...

    Text Solution

    |

  8. fn(x)=e^(f(n-1)(x)) for all n in Na n df0(x)=x ,t h e n d/(dx){fn(x)...

    Text Solution

    |

  9. Suppose f and g are functions having second derivative f'' and g' ' ev...

    Text Solution

    |

  10. If y=e^(-x)cosxa n dyn+kn y=0,w h e r eyn=(d^(n y))/(dx^n)a n dkn are ...

    Text Solution

    |

  11. If a function is represented parametrically by the equations x=(1+log(...

    Text Solution

    |

  12. Statement 1: Leg f(x)=x[x]a n d[dot] denotes the greatest integral fun...

    Text Solution

    |

  13. Statement 1: If f(x) is an odd function, then f^(prime)(x) is an even ...

    Text Solution

    |

  14. If y=a e^(m x)+b e^(-m x), then (d^(2y))/(dx^2) is equals to

    Text Solution

    |

  15. If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]...

    Text Solution

    |

  16. If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s (a)x/(...

    Text Solution

    |

  17. (d^n)/(dx^n)(logx)=? (a)((n-1)!)/(x^n) (b) (n !)/(x^n) (c)((n-2)!)/(...

    Text Solution

    |

  18. If y="sec"(tan^(-1)x),t h e n (dy)/(dx) at x=1 is (a)cos(pi/4) (b)...

    Text Solution

    |

  19. The differential coefficient of f((log)e x) with respect to x , where ...

    Text Solution

    |

  20. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |