Home
Class 12
MATHS
In the curve x^(m+n)=a^(m-n)y^(2n) , pro...

In the curve `x^(m+n)=a^(m-n)y^(2n)` , prove that the `m t h` power of the sub-tangent varies as the `n t h` power of the sub-normal.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that for the curve b y^2=(x+a)^3, the square of the sub-tangent varies as the sub-normal.

If x^m y^n=(x+y)^(m+n), prove that (dy)/(dx)=y/x .

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0

If x^m y^n=(x+y)^(m+n) , prove that (dy)/(dx)=y/x .

If x^m y^n=(x+y)^(m+n), Prove that (dy)/(dx)=y/xdot

Prove that for the curve y=be^(x//a) , the subtangent is of constant length and the sub-normal varies as the square of the ordinate .

If x^m y^n=(x+y)^(m+n) , prove that (d^2y)/(dx^2)=0 .

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot