Home
Class 12
MATHS
Let 0ltaltbltpi/2. \ If \ f(x)=|[tanx,ta...

Let `0ltaltbltpi/2. \ If \ f(x)=|[tanx,tana,tanb],[sinx,sina,sinb],[cosx,cosa,cosb]|`, then find the minimum possible number of roots of `f^(prime)(x)=0` in `(a , b)`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let 0ltaltblt(pi)/(2).Iff(x)= |{:(tanx,tana, tanb),(sinx,sina,sinb),(cosx,cosa,cosb):}|,then find the minimum possible number of roots of f'(x) = 0 in (a,b).

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x)=sinx+cosx+tanx+sin^(-1)x+cos^(-1)x+tan^(-1)xdot Then find the maximum and minimum values of f(x)dot

Let f(x) be a non - constant polynomial such that f(a)=f(b)=f(c)=2. Then the minimum number of roots of the equation f''(x)=0" in "x in (a, c) is/are

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

Let f(x)=max{tanx, cotx} . Then the number of roots of the equation f(x)=(1)/(2)" in "(0, 2pi) is

If int(sinx)/(sin(x-a))dx=f(x)sina+g(x)cosa+c , then

Consider the polynomial f(x)=a x^2+b x+cdot If f(0),f(2)=2, then the minimum value of int_0^2|f^(prime)(x)dxi s___

If the function f(x) =(tan(tanx)-sin(sinx))/(tanx-sinx) (x !=0) : is continuous at x=0 ,then find the value of f (0)